同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 5 Continuous Random Variables

Chapter 5 Continuous Random Variables
Chapter 5 Continuous Random Variables

5.1 Introduction Examples: (1)The time that a train arrives at a specified stop. (2)The lifetime of a transistor
5.1 Introduction Examples: (1) The time that a train arrives at a specified stop. (2) The lifetime of a transistor

汝Definition We say that X is a continous random variables if there exsists a nonnegative funtions f,defined for all real xE(-,+o),having the property that for any set B of real numbers P({X∈B)=∫f(x) The funtionf is called the probability density funtion of the random var iable X
Definition , ( , ), ({ We say that X is a random variables if there exsists a nonnegative funtions f defined for all real x having the property that for any set B of real num co ber ntinous s P ∈ −∞ +∞ }) ( ) var . B probab X B f x dx The funtion f is called the ility density funt of t io he random i X n able ∈ = ∫

*Important results (1)1=PiXe(0,)=f(x)dx (2)P{a≤X≤b}=∫f(x)d (3)P{X=a}=f(x)d=0 (4)P(X<a=P{Xsa)=F(a)="f(x)d
Important results (1)1 { ( , )} ( ) P X f x dx ∞ −∞ = ∈ −∞ ∞ = ∫ (2) { } ( ) b a P a X b f x dx ≤≤= ∫ (3) { } ( ) 0 a a P X a f x dx = = = ∫ (4) { } { } ( ) ( ) a PX a PX a Fa f xdx −∞ <= ≤= = ∫

Example 1a Suppose that X is a continous random variable whose probability density function is given by f(x)= C(4x-2x2)01)
Example 1a 2 (4 2 ) 0 2 () 0 () ? ( ) ( 1) Suppose that X is a continous random variable whose probability density function is given by Cx x x f x otherwise a what is the value of C b Find P X −

Example 1b The amount of time,in hours,that a computer functions before breaking down is a continous random var iable with probability density function given by eo0x≥0 f-0 x<0 What is the probabilty that (a)a compupter will funtion between 50 and 150 hours before breaking down; (b)it will funtion less than 100 hours?
Example 1b - /100 , , var 0 () 0 x The amount of time in hours that a computer functions before breaking down is a continous random iable with probability density function given by e x f x λ ≥ = 0 ( ) 50 150 ; ( ) 100 ? x What is the probabilty that a a compupter will funtion between and hours before breaking down b it will funtion less than hours <

Expectation and variance of continuous random variables If X is a continuous random variable having probability density function f(x),then as f(x)dk≈P{x≤X≤x+dx}for dx smal Define the expected value of X by E(X)=xf(x)dx
Expectation and variance of continuous random variables ( ), ( ) { } If X is a continuous random variable having probability density function f x then as f x dx P x X x dx for dx smal ≈ ≤ ≤+ ( ) () . Define the expected value of X by E X xf x dx ∞ −∞ = ∫

Example 2a Find E(X)when the density function of X is m-“8
Example 2a ( ) 2 0 1 () 0 Find E X when the density function of X is x if x f x otherwise ≤ ≤ =

Example 2b The density function of X is given by - f0≤x≤1 otherwise Find E(e)
Example 2b 1 0 1 () 0 ( ). x The density function of X is given by if x f x otherwise Find E e ≤ ≤ =

Proposition 2.1 If X is a continuous random variable with probability density function f(x),then for any real-valued funtion g, ELg(x】=g(x)f(x)dx
Proposition 2.1 ( ), - , [ ( )] ( ) ( ) If X is a continuous random variable with probability density function f x then for any real valued funtion g Egx gx f xdx ∞ −∞ = ∫
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 4 Mathematics.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 3 Conditional Probability and Independence.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 2 Axioms of Probability(负责人:花虹).pdf
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲4(积分的计算、共形映照).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲3(级数及其应用、奇点与留数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲2(复变函数的两种形式、计算解析函数的级数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲1(复数的四则运算、复数的幂与根).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-2-分式线性变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-1-映射的共形性.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-3-利用积分变换求解微分方程.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-2-Laplace变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-1-Fourier变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-6-利用留数定理计算广义积分.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-5-留数定理.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-4-孤立奇点.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-3-Laurent级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-2-Taylor级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-1-级数与幂级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-6-调和函数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-5-Cauchy型积分公式.pptx
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 6 Jointly Distributed Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 8 Limit Theorems.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 10 Point Estimation.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 9 Sampling Distributions.pdf
- 《概率论与数理统计》课程教学资源(参考教材)概率论教材 Probability and Statistics《A FIRST COURSE IN PROBABILITY》英文电子版(Eighth Edition,Sheldon Ross).pdf
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 1 GAME THEORY - Static complete information pure strategy game.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 2 Mixed strategy game(任课教师:栾浩).ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 3 Dynamic games of complete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 4 Static game of incomplete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 5 Dynamic game with Incomplete Information.ppt
- 同济大学:《常微分方程》课程教学资源(讲义)First-order differential equations.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)微分方程基本概念及几类可求解析解的方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)高阶线性微分方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)线性微分方程组 Linear Systems of Differential Equations(负责人:尚培培).pdf
- 同济大学:《常微分方程》课程教学资源(讲义)非线性微分方程及现象 Nonlinear Systems and Phenomena.pdf
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷1.doc
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷2.doc
- 同济大学:《运筹学》课程教学资源(课件讲稿)引言 Operations Research(负责人:陈雄达).pdf
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)线性规划基本性质.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)一维搜索.ppt