同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of n 1,The method of moments Recall that the kth moment of a random variable,taken about the origin,is ak E(Xk). The corresponding kth sample moment is the average n mk 1∑X i=1 The method of moments is based in the idea that the sample moments should provide good estimates of the corresponding population moments.That is,mk should be a good estimator of ok Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population 1,The method of moments Recall that the kth moment of a random variable, taken about the origin, is αk = E(X k ). The corresponding kth sample moment is the average mk = 1 n Xn i=1 X k i The method of moments is based in the idea that the sample moments should provide good estimates of the corresponding population moments.That is , mk should be a good estimator of αk Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of no DEFINITION Let (X1,...,Xn)is a random sample from a population X. ak=E(X*)。Suppose0=p(a1,·,am),then 0=(A1,...,Am)is the method-of-moments estimator for 0. where Ak=A∑=1X. 4口t9,18,元,2000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population DEFINITION Let (X1, · · · , Xn) is a random sample from a population X. αk = E(X k )"Suppose θ = ϕ(α1, · · · , αm), then θ ˆ = ϕ(A1, · · · , Am) is the method-of-moments estimator for θ, where Ak = 1 n Pn i=1 X k i . Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of ne Property Let(X1,...,Xn)is a random sample from a population X. Denoted as E(X)=u,D(X)=o2,Both of u,o2 are unknown. X is the method-of-moments estimator for u S is the method-of-moments estimator for o2 4口45,43,手·3000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Property Let (X1, · · · , Xn) is a random sample from a population X. Denoted as E(X) = µßD(X) = σ 2ßBoth of µ, σ2 are unknown. 1 X is the method-of-moments estimator for µ 2 S 2 n is the method-of-moments estimator for σ 2 Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of no Property Let(X1,...,Xn)is a random sample from a population X. Denoted as E(X)=u,D(X)=02,Both of u,o2 are unknown. X is the method-of-moments estimator for u S2 is the method-of-moments estimator for o2 4口t9,18,元,2000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Property Let (X1, · · · , Xn) is a random sample from a population X. Denoted as E(X) = µßD(X) = σ 2ßBoth of µ, σ2 are unknown. 1 X is the method-of-moments estimator for µ 2 S 2 n is the method-of-moments estimator for σ 2 Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of no Use the method of moments to estimate the parameters X~P(A) ⊙XE 0XR(01.02 0XR0.00 f(x)= (0+1x”,0<x<1 0 else 4口·5,42手·3000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Use the method of moments to estimate the parameters 1 X ∼ P(λ) 2 X ∼ E(λ) 3 X ∼ R(θ1, θ2) 4 X ∼ R(0, θ) 5 f (x) = ( (θ + 1)x θ , 0 < x < 1, 0, else Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of no Use the method of moments to estimate the parameters X~P(A) X~E() OX心R(,02 0XR(0.0) f)= (0+1)x”,0<x<1 0 else 4口t3,t3元,王000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Use the method of moments to estimate the parameters 1 X ∼ P(λ) 2 X ∼ E(λ) 3 X ∼ R(θ1, θ2) 4 X ∼ R(0, θ) 5 f (x) = ( (θ + 1)x θ , 0 < x < 1, 0, else Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interva 10.3 Small-Sample Confidence Intervals for parameters of no Use the method of moments to estimate the parameters X~P(A) 9X~E() 0X~R(0,02) 0XR(0.0 (0+1Dx”0<x<1 0 else 4日·5,421手,3000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Use the method of moments to estimate the parameters 1 X ∼ P(λ) 2 X ∼ E(λ) 3 X ∼ R(θ1, θ2) 4 X ∼ R(0, θ) 5 f (x) = ( (θ + 1)x θ , 0 < x < 1, 0, else Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of no Use the method of moments to estimate the parameters ④X~P(A) X~E(A) ⊙X~R(01,2) 0X~R(0,) f(x)= (0+1)x”,0<x<1 0 else 4口13,48)4元,3000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Use the method of moments to estimate the parameters 1 X ∼ P(λ) 2 X ∼ E(λ) 3 X ∼ R(θ1, θ2) 4 X ∼ R(0, θ) 5 f (x) = ( (θ + 1)x θ , 0 < x < 1, 0, else Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interva 10.3 Small-Sample Confidence Intervals for parameters of no Use the method of moments to estimate the parameters X~P(A) 9XE() oXR(,02) ⊙X~R(0,) 0 (0+1)x,0<x<1, 0 else 4口·5,43)手,3月00 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population Use the method of moments to estimate the parameters 1 X ∼ P(λ) 2 X ∼ E(λ) 3 X ∼ R(θ1, θ2) 4 X ∼ R(0, θ) 5 f (x) = ( (θ + 1)x θ , 0 < x < 1, 0, else Xiaohan Yang Chapter 10 Point Estimation

10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of no 2.the method of maximum likelihood (MLE) Let (X1,...,Xn)is a random sample from a population X. Suppose the probability density(mass)function of X is f(x:0),0e.We sometimes write the likelihood function as L(0)=L(0,x,…,xn)=n1f(x;) 4口t3,3元,王000 Xiaohan Yang Chapter 10 Point Estimation
logo 10.1 TWO METHODS OF ESTIMATION 10.2 Confidence Interval 10.3 Small-Sample Confidence Intervals for parameters of normal population 2. the method of maximum likelihood (MLE) Let (X1, · · · , Xn) is a random sample from a population X. Suppose the probability density(mass) function of X is f (x; θ), θ ∈ Θ. We sometimes write the likelihood function as L(θ) = L(θ, x1, · · · , xn) ˆ=Πn i=1 f (xi ; θ) Xiaohan Yang Chapter 10 Point Estimation
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 8 Limit Theorems.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 6 Jointly Distributed Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 5 Continuous Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 4 Mathematics.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 3 Conditional Probability and Independence.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 2 Axioms of Probability(负责人:花虹).pdf
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲4(积分的计算、共形映照).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲3(级数及其应用、奇点与留数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲2(复变函数的两种形式、计算解析函数的级数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲1(复数的四则运算、复数的幂与根).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-2-分式线性变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-1-映射的共形性.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-3-利用积分变换求解微分方程.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-2-Laplace变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-1-Fourier变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-6-利用留数定理计算广义积分.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-5-留数定理.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-4-孤立奇点.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-3-Laurent级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-2-Taylor级数.pptx
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 9 Sampling Distributions.pdf
- 《概率论与数理统计》课程教学资源(参考教材)概率论教材 Probability and Statistics《A FIRST COURSE IN PROBABILITY》英文电子版(Eighth Edition,Sheldon Ross).pdf
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 1 GAME THEORY - Static complete information pure strategy game.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 2 Mixed strategy game(任课教师:栾浩).ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 3 Dynamic games of complete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 4 Static game of incomplete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 5 Dynamic game with Incomplete Information.ppt
- 同济大学:《常微分方程》课程教学资源(讲义)First-order differential equations.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)微分方程基本概念及几类可求解析解的方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)高阶线性微分方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)线性微分方程组 Linear Systems of Differential Equations(负责人:尚培培).pdf
- 同济大学:《常微分方程》课程教学资源(讲义)非线性微分方程及现象 Nonlinear Systems and Phenomena.pdf
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷1.doc
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷2.doc
- 同济大学:《运筹学》课程教学资源(课件讲稿)引言 Operations Research(负责人:陈雄达).pdf
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)线性规划基本性质.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)一维搜索.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)单纯形方法.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)对偶理论及灵敏度分析.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)整数(线性)规划.ppt