同济大学:《常微分方程》课程教学资源(讲义)First-order differential equations

Ordinary Differential Equations 4口14①y4至2000 Ordinary Differential Equations
Ordinary Differential Equations Ordinary Differential Equations

The laws of the universe are written in the language of mathematics.Algebra is sufficient to solve many static prob- lems,but the most interesting natural phenomena involve change and are described by equations that relate changing quantities. 4口1日,1元2000 Ordinary Differential Equations
The laws of the universe are written in the language of mathematics. Algebra is sufficient to solve many static problems, but the most interesting natural phenomena involve change and are described by equations that relate changing quantities. Ordinary Differential Equations

Example The time rate of change of a population P(t)with constant birth and death rates is proportional to the size of the population,i.e., dp (1) Note that P(t)=Cek is a solution of(1),because P'(t)=Cke=k(Ce)=kP(t),VIER 4日10y4至,1无2000 Ordinary Differential Equations
Example The time rate of change of a population P(t) with constant birth and death rates is proportional to the size of the population, i.e., dP dt = kP. (1) Note that P(t) = Ce kt is a solution of (1), because P 0 (t) = Ckekt = k(Cekt) = kP(t), ∀t ∈ R Ordinary Differential Equations

Example Suppose that P(r)=Cekt is the population of a colony of bac- teria at time t(hours,h), {om8二c2-c- c=1000, 2000=P(1)=Ck 1k=ln2≈0.693147 Thus, P(t)=1000.2 4口14①y4至2000 Ordinary Differential Equations
Example Suppose that P(t) = Cekt is the population of a colony of bacteria at time t (hours, h), ( 1000 = P(0) = Ce0 = C, 2000 = P(1) = Cek =⇒ ( C = 1000, k = ln 2 ≈ 0.693147 Thus, P(t) = 1000 · 2 t To predict the number of bacteria in the population after one and a half hours (t=1.5) is P(1.5) = 1000 · 2 3 2 ≈ 2828 Ordinary Differential Equations

Example Suppose that P(t)=Cekt is the population of a colony of bac- teria at time t(hours,h), {=8-c一-0m 2000=P(1)=Cek Thus, P(t)=1000.2 To predict the number of bacteria in the population after one and a half hours(t=1.5)is P(1.5)=1000.22≈2828 4口14①y4至2000 Ordinary Differential Equations
Example Suppose that P(t) = Cekt is the population of a colony of bacteria at time t (hours, h), ( 1000 = P(0) = Ce0 = C, 2000 = P(1) = Cek =⇒ ( C = 1000, k = ln 2 ≈ 0.693147 Thus, P(t) = 1000 · 2 t To predict the number of bacteria in the population after one and a half hours (t=1.5) is P(1.5) = 1000 · 2 3 2 ≈ 2828 Ordinary Differential Equations

Mathematical Models Real-world situation Formulation interpretation Mathematical Model Mathematical Analysis Mathematical results Figure:The process of mathematical modeling Ordinary Differential Equations
Mathematical Models Real-world situation Formulation Interpretation Mathematical Model Mathematical Analysis Mathematical results Figure: The process of mathematical modeling Ordinary Differential Equations

Terminology Definition(DE) Differential equations:equations containing an unknown func- tion and one or more of its derivatives. 4日10y至,1元3000 Ordinary Differential Equations
Terminology Definition (DE) Differential equations: equations containing an unknown function and one or more of its derivatives. Definition (ODE) Ordinary differential equations: differential equations that involve an unknown function of a single independent variable . Example The population function P(t) dP dt = kP Ordinary Differential Equations

Terminology Definition(DE) Differential equations:equations containing an unknown func- tion and one or more of its derivatives. Definition (ODE) Ordinary differential equations:differential equations that in- volve an unknown function of a single independent variable. 4日10,1元2000 Ordinary Differential Equations
Terminology Definition (DE) Differential equations: equations containing an unknown function and one or more of its derivatives. Definition (ODE) Ordinary differential equations: differential equations that involve an unknown function of a single independent variable . Example The population function P(t) dP dt = kP Ordinary Differential Equations

Terminology Definition (DE) Differential equations:equations containing an unknown func- tion and one or more of its derivatives. Definition (ODE) Ordinary differential equations:differential equations that in- volve an unknown function of a single independent variable. Example The population function P(t) dP =kP dr 4口14①y至,元2000 Ordinary Differential Equations
Terminology Definition (DE) Differential equations: equations containing an unknown function and one or more of its derivatives. Definition (ODE) Ordinary differential equations: differential equations that involve an unknown function of a single independent variable . Example The population function P(t) dP dt = kP Ordinary Differential Equations

Example The temperature u=u(x,t)of a long thin uniform rod satisfies du 2u 01-kx2 where k is the thermal diffusivity of the rod. 4日10y4至,1无2000 Ordinary Differential Equations
Example The temperature u = u(x,t) of a long thin uniform rod satisfies ∂u ∂ t = k ∂ 2u ∂ x 2 , where k is the thermal diffusivity of the rod. Definition (PDE) Partial differential equations: differential equations that involve an unknown function of more than one independent variables, together with partial derivatives of the function. Ordinary Differential Equations
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 5 Dynamic game with Incomplete Information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 4 Static game of incomplete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 3 Dynamic games of complete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 2 Mixed strategy game(任课教师:栾浩).ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 1 GAME THEORY - Static complete information pure strategy game.ppt
- 《概率论与数理统计》课程教学资源(参考教材)概率论教材 Probability and Statistics《A FIRST COURSE IN PROBABILITY》英文电子版(Eighth Edition,Sheldon Ross).pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 9 Sampling Distributions.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 10 Point Estimation.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 8 Limit Theorems.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 6 Jointly Distributed Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 5 Continuous Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 4 Mathematics.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 3 Conditional Probability and Independence.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 2 Axioms of Probability(负责人:花虹).pdf
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲4(积分的计算、共形映照).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲3(级数及其应用、奇点与留数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲2(复变函数的两种形式、计算解析函数的级数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲1(复数的四则运算、复数的幂与根).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-2-分式线性变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-1-映射的共形性.pptx
- 同济大学:《常微分方程》课程教学资源(讲义)微分方程基本概念及几类可求解析解的方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)高阶线性微分方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)线性微分方程组 Linear Systems of Differential Equations(负责人:尚培培).pdf
- 同济大学:《常微分方程》课程教学资源(讲义)非线性微分方程及现象 Nonlinear Systems and Phenomena.pdf
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷1.doc
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷2.doc
- 同济大学:《运筹学》课程教学资源(课件讲稿)引言 Operations Research(负责人:陈雄达).pdf
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)线性规划基本性质.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)一维搜索.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)单纯形方法.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)对偶理论及灵敏度分析.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)整数(线性)规划.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)使用导数的最优化方法(无约束优化方法).ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)最优性条件.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)惩罚函数法.ppt
- 《线性代数》课程教学资源(文献资料)THE $25,000,000,000 EIGENVECTOR THE LINEAR ALGEBRA BEHIND GOOGLE.pdf
- 《线性代数》课程教学资源(文献资料)数据降维方法综述(清华大学:马小龙).pdf
- 《线性代数》课程教学资源(文献资料)主元分析(PCA)理论分析及应用.pdf
- 同济大学:《线性代数》课程教学资源(试卷习题)2006-2007学年第二学期B卷(含答案).pdf
- 同济大学:《线性代数》课程教学资源(试卷习题)2008-2009学年第一学期(B卷).pdf