同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 4 Mathematics

Mathematics Probability and Statistics
Mathematics Probability and Statistics

4.1 Random variables 。Definition the real-valued functions defined on the sample space -2 -1 0 3
4.1 Random variables • Definition the real-valued functions defined on the sample space -3 -2 -1 0 1 2 3

Random variables can be: Discrete random variables have a countable number of outcomes Examples:Dead/alive,treatment/placebo,dice,counts, etc. Continuous random variables have an infinite continuum of possible values. Examples:blood pressure,weight,the speed of a car,the real numbers from 1 to 6
Random variables can be: • Discrete random variables have a countable number of outcomes – Examples: Dead/alive, treatment/placebo, dice, counts, etc. • Continuous random variables have an infinite continuum of possible values. – Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6

Example 1a roll of a die Probability mass function (p.m.f.) X p(x) 1 pX=1=1/6 p(x) 2 PX=2上=1/16 3 pX=31/6 1/6 4 P(X=4)116 1 ll 123456 5 pX=5上1/6 6 pX=6F1/6 ∑P(x)=1 all x
Probability mass function (p.m.f.) x p(x) 1 p(x=1)=1/6 2 p(x=2)=1/6 3 p(x=3)=1/6 4 p(x=4)=1/6 5 p(x=5)=1/6 6 p(x=6)=1/6 x p(x) 1/6 1 2 3 4 5 6 ∑ = all x P(x) 1 Example 1a roll of a die

Cumulative distribution function(CDF) X P(xsA) 1 PX≤1F1/6 2 PX≤2F2/6 1.0 P() 5/6 3 PX≤3上=3/6 2/3 1/2 4 P(XS4F416 1/3 6 5 P(xS5516 123456 6 PX≤66/6
Cumulative distribution function (CDF) x P(x) 1/6 1 2 3 4 5 6 1/3 1/2 2/3 5/6 1.0 x P(x≤A) 1 P(x≤1)=1/6 2 P(x≤2)=2/6 3 P(x≤3)=3/6 4 P(x≤4)=4/6 5 P(x≤5)=5/6 6 P(x≤6)=6/6

Review Question 1 How about rolls two dice? 12其他
Review Question 1 • How about rolls two dice? 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 其他 36*p(x)

Review Question 2 Two dice are rolled and the sum of the face values is six.What is the probability that at least one of the dice came up a 3? a. 1/5 b. 2/3 How can you get a 6 on two dice?1- C. 1/2 5,5-1,2-4,4-2,3-3 d 5/6 One of these five has a 3. e. 1.0 .1/5
Review Question 2 Two dice are rolled and the sum of the face values is six. What is the probability that at least one of the dice came up a 3? a. 1/5 b. 2/3 c. 1/2 d. 5/6 e. 1.0 How can you get a 6 on two dice? 1- 5, 5-1, 2-4, 4-2, 3-3 One of these five has a 3. ∴1/5

Example1b(P133) Three balls are to be randomly selected without replacement from an urn containing 20 balls numbered 1 through 20.If we bet that at least one of the drawn balls has a number as large as or larger than 17,what is the probability that we win the bet? ·Solution:0.508
Example1b(P133) • Three balls are to be randomly selected without replacement from an urn containing 20 balls numbered 1 through 20. If we bet that at least one of the drawn balls has a number as large as or larger than 17, what is the probability that we win the bet? • Solution:0.508

4.3 Expected value If X is a discrete random variable having a probability mass function p(x),the expectation or the expected value of X, denoted by E(X),is defined by E(X)=∑xpy x:p(x)>0
4.3 Expected value • If X is a discrete random variable having a probability mass function p(x), the expectation or the expected value of X, denoted by E(X), is defined by : 0 ( ) x p(x) E X xp(x) > = ∑

Example 3a Find E(X)where X is the outcome when we roll a fair die ·Solution:3.5
Example 3a • Find E(X) where X is the outcome when we roll a fair die • Solution:3.5
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 3 Conditional Probability and Independence.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 2 Axioms of Probability(负责人:花虹).pdf
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲4(积分的计算、共形映照).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲3(级数及其应用、奇点与留数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲2(复变函数的两种形式、计算解析函数的级数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲1(复数的四则运算、复数的幂与根).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-2-分式线性变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-1-映射的共形性.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-3-利用积分变换求解微分方程.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-2-Laplace变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-1-Fourier变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-6-利用留数定理计算广义积分.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-5-留数定理.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-4-孤立奇点.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-3-Laurent级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-2-Taylor级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-1-级数与幂级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-6-调和函数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-5-Cauchy型积分公式.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)2-4-复积分.pptx
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 5 Continuous Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 6 Jointly Distributed Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 8 Limit Theorems.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 10 Point Estimation.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 9 Sampling Distributions.pdf
- 《概率论与数理统计》课程教学资源(参考教材)概率论教材 Probability and Statistics《A FIRST COURSE IN PROBABILITY》英文电子版(Eighth Edition,Sheldon Ross).pdf
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 1 GAME THEORY - Static complete information pure strategy game.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 2 Mixed strategy game(任课教师:栾浩).ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 3 Dynamic games of complete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 4 Static game of incomplete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 5 Dynamic game with Incomplete Information.ppt
- 同济大学:《常微分方程》课程教学资源(讲义)First-order differential equations.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)微分方程基本概念及几类可求解析解的方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)高阶线性微分方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)线性微分方程组 Linear Systems of Differential Equations(负责人:尚培培).pdf
- 同济大学:《常微分方程》课程教学资源(讲义)非线性微分方程及现象 Nonlinear Systems and Phenomena.pdf
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷1.doc
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷2.doc
- 同济大学:《运筹学》课程教学资源(课件讲稿)引言 Operations Research(负责人:陈雄达).pdf
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)线性规划基本性质.ppt