同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW( 8.3 The Central Limit Theorem 3o rule of normal distribution Suppose X N(u,o2) P(X-4<ka)=P(<k)=2Φ(k)-1 0P(0X-4<o)=2Φ(1)-1=0.683 0P(X-4<2a)=2Φ(2)-1=0.955 0P(X-4<3G)=2Φ(3)-1=0.997 4口t5,48)元2月00 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem 3σ rule of normal distribution Suppose X N(µ, σ2 ) P(|X − µ| < kσ) = P(| x − µ σ | < k) = 2Φ(k) − 1 1 P(|X − µ| < σ) = 2Φ(1) − 1 = 0.683 2 P(|X − µ| < 2σ) = 2Φ(2) − 1 = 0.955 3 P(|X − µ| < 3σ) = 2Φ(3) − 1 = 0.997 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem 30 rule of normal distribution Suppose X N(u,o2) PIX-4<ko)=PI2,1<k)=2(k)-1 0P(X-川<o)=2Φ(1)-1=0.683 gP(X-4川<2a)=2φ(2)-1=0.955 0P(X-4<3a)=2Φ(3)-1=0.997 4日5,43)手,3月00 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem 3σ rule of normal distribution Suppose X N(µ, σ2 ) P(|X − µ| < kσ) = P(| x − µ σ | < k) = 2Φ(k) − 1 1 P(|X − µ| < σ) = 2Φ(1) − 1 = 0.683 2 P(|X − µ| < 2σ) = 2Φ(2) − 1 = 0.955 3 P(|X − µ| < 3σ) = 2Φ(3) − 1 = 0.997 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW( 8.3 The Central Limit Theorem 3o rule of normal distribution Suppose X N(u,o2) P(X-4<ka)=P(<k)=2Φ(k)-1 0P(IX-4<o)=2φ(1)-1=0.683 0P(IX-4<2a)=2(2)-1=0.955 0P(IX-4<3o)=2φ(3)-1=0.997 4口913)元,王000 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem 3σ rule of normal distribution Suppose X N(µ, σ2 ) P(|X − µ| < kσ) = P(| x − µ σ | < k) = 2Φ(k) − 1 1 P(|X − µ| < σ) = 2Φ(1) − 1 = 0.683 2 P(|X − µ| < 2σ) = 2Φ(2) − 1 = 0.955 3 P(|X − µ| < 3σ) = 2Φ(3) − 1 = 0.997 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Markov's inequality If X is a random variable that takes only nonnegative values,then for any value a >0, P(X≥a)≤ E[X] 日5,421手,3000 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Markov’s inequality If X is a random variable that takes only nonnegative values, then for any value a > 0ß P(X ≥ a) ≤ E[X] a Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW( 8.3 The Central Limit Theorem Chebyshev's's inequality If X is a random variable with finite mean E(X)=u and variance D(X)=a2,then for any valuee>0 P0X-川≥≤爱 Equivalently P(IX-E(X)1≥c)≤Dy 口15,18)4元,3000 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Chebyshev’s’s inequality If X is a random variable with finite mean E(X) = µ and variance D(X) = σ 2 , then for any value > 0 P(|X − µ| ≥ ) ≤ σ 2 2 Equivalently P(|X − E(X)| ≥ ) ≤ D(X) 2 Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem 2.1 The weak law of large numbers Let X1,...,Xn be a sequence of independent and identically distributed random variables.Each having finite mean E(Xi)u,D(Xi)-2.Then,for any c>0, P+,+X-川≥)→0 asn→∞ 4口5,42手·3000 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem 2.1 The weak law of large numbers Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each having finite mean E(Xi) ˆ=µßD(Xi) ˆ=σ 2 . Then, for any > 0, P(| X1 + · · · + Xn n − µ| ≥ ) → 0 as n → ∞ Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem3.1 The Central Limit Theorem Let X1,...,X be a sequence of independent and identically distributed random variables.Each having finite mean E(Xi)=u and variance D(Xi)=o2.Then the distribution of X+…+Xn-n4 aVn tends to the standard normal as noo.That is,for -00<a<十0, imP2X-业≤X刘=() n-0o Vna Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem3.1 The Central Limit Theorem Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each having finite mean E(Xi) = µ and variance D(Xi) = σ 2 . Then the distribution of X1 + · · · + Xn − nµ σ √ n tends to the standard normal as n → ∞. That is, for −∞ < a < +∞ß lim n→∞ P( Pn i=1 Xi − nµ √ nσ ≤ x) = Φ(x) Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem EXAMPLE 3C If 10 fair dice are rolled,find the approximate probability that the sum obtained is between 30 and 40,inclusive. 4日5,43)手,3月00 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem EXAMPLE 3C If 10 fair dice are rolled, find the approximate probability that the sum obtained is between 30 and 40, inclusive. Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEV'S INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1,...,Xn be a sequence of independent and identically distributed random variables.Each Xi B(1,p).Then H-00<X<+00, mPX-吧≤x)=(x) Vnp(1-p) 1Xi~B(n,p),.when Y~B(n,p),n is large, P(a<X≤b)= ∑cpP1-p)- a<k≤b 中( b-np a-np √np(1-p) Vnp(1-p) 0a=0时,认为x=一0: b=n时,认地.9 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each Xi ∼ B(1, p). Then ∀ − ∞ < x < +∞ß lim n→∞ P( Pn i=1 Xi − np p np(1 − p) ≤ x) = Φ(x) 1 ∵ Pn i=1 Xi ∼ B(n, p)ß∴ when Y ∼ B(n, p)ßn is largeß P(a < X ≤ b) = X a<k≤b C k n p p (1 − p) n−k ≈ Φ( b − np p np(1 − p) ) − Φ( a − np p np(1 − p) ) 2 a = 0ûß@èx = −∞¶b = nûß@èb = +∞ Xiaohan Yang Chapter 8 Limit Theorems

8.2 CHEBYSHEVS INEQUALITY AND THE WEAK LAW 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1,...,Xn be a sequence of independent and identically distributed random variables.Each Xi~B(1,p).Then V-00<X<十00, lim P(ZE1X-mp n→ Vnp(1-p) ≤x)=(x) .i B(n,p),.when Y~B(n,p),n is large, P(a<X≤b)=∑ChpP(1-p)-k a<k<b b-np -lm-可 a-np mp(1-p) 。a=0时,认为x=-∞;b=n时,认为地=才0:,,至a。 Xiaohan Yang Chapter 8 Limit Theorems
logo 8.2 CHEBYSHEV’S INEQUALITY AND THE WEAK LAW OF LARGE NUMBERS 8.3 The Central Limit Theorem Theorem3.3 De Moivre-Laplace The Central Limit Theorem Let X1, · · · , Xn be a sequence of independent and identically distributed random variables. Each Xi ∼ B(1, p). Then ∀ − ∞ < x < +∞ß lim n→∞ P( Pn i=1 Xi − np p np(1 − p) ≤ x) = Φ(x) 1 ∵ Pn i=1 Xi ∼ B(n, p)ß∴ when Y ∼ B(n, p)ßn is largeß P(a < X ≤ b) = X a<k≤b C k n p p (1 − p) n−k ≈ Φ( b − np p np(1 − p) ) − Φ( a − np p np(1 − p) ) 2 a = 0ûß@èx = −∞¶b = nûß@èb = +∞ Xiaohan Yang Chapter 8 Limit Theorems
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 6 Jointly Distributed Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 5 Continuous Random Variables.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 4 Mathematics.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 3 Conditional Probability and Independence.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 2 Axioms of Probability(负责人:花虹).pdf
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲4(积分的计算、共形映照).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲3(级数及其应用、奇点与留数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲2(复变函数的两种形式、计算解析函数的级数).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)习题选讲1(复数的四则运算、复数的幂与根).pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-2-分式线性变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)5-1-映射的共形性.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-3-利用积分变换求解微分方程.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-2-Laplace变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)4-1-Fourier变换.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-6-利用留数定理计算广义积分.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-5-留数定理.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-4-孤立奇点.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-3-Laurent级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-2-Taylor级数.pptx
- 同济大学:《复变函数和积分变换》课程教学资源(PPT课件讲稿)3-1-级数与幂级数.pptx
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 10 Point Estimation.pdf
- 同济大学:《概率论与数理统计》课程教学资源(讲稿)Chapter 9 Sampling Distributions.pdf
- 《概率论与数理统计》课程教学资源(参考教材)概率论教材 Probability and Statistics《A FIRST COURSE IN PROBABILITY》英文电子版(Eighth Edition,Sheldon Ross).pdf
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 1 GAME THEORY - Static complete information pure strategy game.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 2 Mixed strategy game(任课教师:栾浩).ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 3 Dynamic games of complete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 4 Static game of incomplete information.ppt
- 西安电子科技大学:《博弈论》课程教学资源(PPT课件)Lecture 5 Dynamic game with Incomplete Information.ppt
- 同济大学:《常微分方程》课程教学资源(讲义)First-order differential equations.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)微分方程基本概念及几类可求解析解的方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)高阶线性微分方程.pdf
- 同济大学:《常微分方程》课程教学资源(讲义)线性微分方程组 Linear Systems of Differential Equations(负责人:尚培培).pdf
- 同济大学:《常微分方程》课程教学资源(讲义)非线性微分方程及现象 Nonlinear Systems and Phenomena.pdf
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷1.doc
- 同济大学:《运筹学》课程教学资源(试卷习题)运筹学试卷2.doc
- 同济大学:《运筹学》课程教学资源(课件讲稿)引言 Operations Research(负责人:陈雄达).pdf
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)线性规划基本性质.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)一维搜索.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)单纯形方法.ppt
- 同济大学:《运筹学》课程教学资源(PPT课件讲稿)对偶理论及灵敏度分析.ppt