《全球变化科学》课程教学资源(讲义)02 Multiscale Analysis of Suspended Sediment Discharge in the Jiu River Basin

WuhanUniversityofTechnologyDepartmentofSpatialInformationandPlanningSchoolof ResourcesandEnvironment EngineeringMultiscale Analysisof Suspended Sediment Dischargein the Jiu River BasinGabrielaAdinaMOROSANU-MITOSERIUInstituteofGeographyoftheRomanianAcademy,Romaniagabriela.adina.m@gmail.com
1 Multiscale Analysis of Suspended Sediment Discharge in the Jiu River Basin 1 Wuhan University of Technology Department of Spatial Information and Planning School of Resources and Environment Engineering Gabriela Adina MOROȘANU-MITOȘERIU Institute of Geography of the Romanian Academy, Romania gabriela.adina.m@gmail.com

KeyaspectsAccountingforfinesedimentsourcesincomplexriverbasinsRemotevs.closetosinkalluvialsourcesExtensivevolumes of materialsarereleasedduringhighwaterandfloodperiodsFlowvariabilityplays an essential role inmobilizingandtransporting sediments duringfloodsNeedforproxymethodstounderstandtheprocessescontrollingthefinesedimentdynamicsWater-SuspendedsedimentrelationshipWhichroledothefloodsplayinmobilizingsuspendedsediments?Which time scales are more appropriate to investigate the suspended sedimentvariability?AIRANDWATER COMPONENTS OFTHEENVIRONMENT INTERNATIONALCONFERENCE
AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE 2 Which role do the floods play in mobilizing suspended sediments? Which time scales are more appropriate to investigate the suspended sediment variability? Accounting for fine sediment sources in complex river basins Key aspects Flow variability plays an essential role in mobilizing and transporting sediments during floods Need for proxy methods to understand the processes controlling the fine sediment dynamics Water – Suspended sediment relationship Remote vs. close to sink alluvial sources Extensive volumes of materials are released during high water and flood periods

HypothesisAlluvial sources, suspended sediment transfer pathways and floodcan be captured byanalysingthepropagationtimeandthehysteretic behaviorof liquid and solid discharge.Investigating the variability in sediment delivery and storage along river courses, as a substitutemeans for more complex and data - sensitive methodological approaches, for apportioning theObjectivedominant sourcesof sedimentsmobilized duringfloods,inthe2001-2010period.Study areaJiuRiverBasin (JRB):UkraineSWRomaniaHungarRep.otDanubeCarpathiantributary,Moldovawatershed-Area~10,080km2Complexnatural(geomorphologyandgeomorphicfactors)&anthropogenic(coal mining)sedimentyielddriversNatural&AnthropogenicsedimentLegendMain RiversSerblasources (coal bearings)Alirudes(mElevations (m)SneMuC254High:2519Bulgari200Km050100Low : 23051020KmAIRANDWATERCOMPONENTSOFTHEENVIRONMENTINTERNATIONALCONFERENCE
Alluvial sources, suspended sediment transfer pathways and flood can be captured by analysing the propagation time and the hysteretic behavior of liquid and solid discharge. Objective Study area Jiu River Basin (JRB): SW Romania Danube tributary, Carpathian watershed Area ~10,080 km2 Complex natural (geomorphology and geomorphic factors) & anthropogenic (coal mining) sediment yield drivers Natural & Anthropogenic sediment sources (coal bearings) Hypothesis 3 Investigating the variability in sediment delivery and storage along river courses, as a substitute means for more complex and data – sensitive methodological approaches, for apportioning the dominant sources of sediments mobilized during floods, in the 2001 - 2010 period. AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE

Methodology1.Data used23°0'0'E24*0'0*EThe liquid discharge (Q)series(mean daily water discharge)&Legendsuspendedsedimentdischarge(R).JiuRiverBasinRiversDaily,monthly,annuallytimestep(Q&R);hourlydischarge(Q)Gauging station1...22Hydrological,Period:2001-2010order→22gaugingstations12Based on the suspended sediment discharge, which we furtherdeterminedseveral parameters,suchas:.the average and maximum multiannual suspended sediments16discharge (Ravg and Rmax, in kg's-l);:the average suspended sediment concentration (SSC, in kg'm-3);.the annual volume of suspended sediments (W, millions oftonnes):theaveragespecificsoliddischarge(r,int-ha-l-an-1)→>SSC[g.m-3]=R[kg·s-] /Q[m3-s-]·1000JiuRiverBasinmapand the studiedgaugingstations(g.s.),numberedbyhydrologicalorder051020KmAIRANDWATERCOMPONENTSOFTHEENVIRONMENTINTERNATIONALCONFERENCE3m0*4900
4 Methodology The liquid discharge (Q) series (mean daily water discharge) & suspended sediment discharge (R). Daily, monthly, annually time step (Q & R); hourly discharge (Q) Period: 2001 – 2010 22 gauging stations Based on the suspended sediment discharge, which we further determined several parameters, such as: • the average and maximum multiannual suspended sediments discharge (Ravg and Rmax, in kg∙s -1 ); • the average suspended sediment concentration (SSC, in kg∙m-3 ); • the annual volume of suspended sediments (W, millions of tonnes); • the average specific solid discharge (r, in t∙ha-1 ∙an-1 ) SSC[g∙m-3 ] = Ṝ [kg∙s -1 ] / Q̄ [m3 ∙s -1 ] ∙1000 1. Data used Jiu River Basin map and the studied gauging stations (g.s.), numbered by hydrological order AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE

CatchmentQavgRavgHydrologicalUpstream2. MethodsareaRiverGauging stationorderalt. (m)(km2)(ms-l)(kg*sl)11593.4413460.16Campu lui Neagm12632896.91Barbafeni0.284Iscroni113450211.183.72Gauging stations andupstream7Sadu1066125524.427.66catchments consideredfortheJiu10697772350.3913.22Rovinaristudy(2001-2010)14563Filiasi523970.9816.8319Racari508721789.27Thestationsareorganized inupstream-44.41214469253Podari97.9973.56downstream order, river-wise.22Zaval41710,070105.48108.61225Valea de Pesti13001.190.04Valea de Pesti5135Taia1476Lonea Taia1.390.35682612060.32LoneaEastern Jiu2.01Note:861538CeleiOrlea0.081.86Qavg average liquid dischargeebetween95482704.59TelestiBistrita5.512001and201011JiltTurceni5403761.120.45Ravg = averagesolid discharge between127496309.674.94Targu CarbunestiGilort2001and201013590Turburea102712.2914.63155266467.94Brosteni6.73Motru1838413.25Fata Motrului170010.18164824202.95CorcovaCosustea2.5717Strehaia2573120.78Husnita0.31310370.08BustuchinAmaradia0.29AIRANDWATERCOMPONENTSOFTHEENVIRONMENTINTERNATIONALCORFERENCE5
Hydrological order Gauging station River Upstream alt. (m) Catchment area Qavg Ravg (km2 ) (m³∙s-1 ) (kg∙s-1 ) 1 Câmpu lui Neag Jiu 1346 159 3.44 0.16 3 Bărbăţeni 1263 289 6.91 0.28 4 Iscroni 1134 502 11.18 3.72 7 Sadu 1066 1255 24.42 7.66 10 Rovinari 697 7723 50.39 13.22 14 Filiasi 563 5239 70.98 16.83 19 Răcari 508 7217 89.27 44.41 21 Podari 446 9253 97.99 73.56 22 Zăval 417 10,070 105.48 108.61 2 Valea de Peşti Valea de Peşti 1300 25 1.19 0.04 5 Lonea Taia Taia 1476 135 1.39 0.35 6 Lonea Eastern Jiu 1206 826 2.01 0.32 8 Celei Orlea 538 61 1.86 0.08 9 Telesti Bistrița 548 270 4.59 5.51 11 Turceni Jilț 540 376 1.12 0.45 12 Târgu Cărbuneşti Gilort 749 630 9.67 4.94 13 Turburea 590 1027 12.29 14.63 15 Broşteni Motru 526 646 7.94 6.73 18 Faţa Motrului 384 1700 13.25 10.18 16 Corcova Cosustea 482 420 2.95 2.57 17 Strehaia Hușnița 257 312 0.78 0.31 20 Bustuchin Amaradia 310 37 0.08 0.29 5 Gauging stations and upstream catchments considered for the study (2001-2010) Note: Qavg = average liquid discharge between 2001 and 2010. Ravg = average solid discharge between 2001 and 2010. The stations are organized in upstream - downstream order, river-wise. AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE 2. Methods

2. MethodsRotRaasSSCFagrmaxGauging StationRiverkg*s-lkgs-!g.f1t-ha-l-an-!t-ha-l-an-!Jiu0.285.8BARBATENI23.40.0425.6BROSTENI6.733.29428.3Motru875847.7GaugingstationsandupstreamBUSTUCHINAmaradia0.2915222.8415125.53576.5catchments consideredforthestudyandJiuCAMPU LUI NEAG0.1619.90.3239.646.8their solid discharge average andCELEIOrlea0.0840.53550.391810.6maximumvalues(2001-2010)CORCOVA2.574521.94872.2Cosustea340.3ThesiationsareorganizedinupstreamMotru10.1811501.89213.9768.8FATAMOTRULUIdownstreamorder,river-wise.Jiu237.2FILIASI16.8312821.0277.4Jiu3.725462.34333.1ISCRONI343.95.7LONEA0.320.7413.4157.7Jiu DeEstTaia0.35LONEA_TAIA1360.1352.1252.7Note:JiuPODARI73.5640202.51137.4750.7Ravg and Rmax → average & maximum1suspendedJiuRACARI44.4110951.9548.0497.5sediment loadROVINARIJiu13.2233001.45363.0262.3Tavg and Imax → average&specificmaximumJiu7.66938SADU1.93236.3309.9suspended sedimentdischarge0.3141.20.3241.8STREHAIAHusnita403.8SSCAveragesuspendedsedimentconcentrationTELESTIBistrita5.5116406.451200.51920.8TG.CARBUNESTIGilort4.9413722.48688.7510.6TURBUREAGilort14.6368454.502107.61190.4Jilt0.45406.1TURCENI3500.38294.40.0423.40.5033.3VALEADEPESTIValea de Pesti296.0JiuAIRAND WATER COMPONENTS OF THEENVIRONMENTINTERNATIONALCONFERENCE ZAVAL108.6147203.42148.61029.7
Gauging Station River Ravg kg∙s-1 Rmax kg∙s-1 ravg t∙ha-1 ∙an-1 rmax t∙ha-1 ∙an-1 SSC g∙l-1 BĂRBĂȚENI Jiu 0.28 23.4 0.04 25.6 5.8 BROȘTENI Motru 6.73 875 3.29 428.3 847.7 BUSTUCHIN Amaradia 0.29 1522 2.84 15125.5 3576.5 CÂMPU LUI NEAG Jiu 0.16 19.9 0.32 39.6 46.8 CELEI Orlea 0.08 355 0.39 1810.6 40.5 CORCOVA Coșuștea 2.57 452 1.94 340.3 872.2 FAȚA MOTRULUI Motru 10.18 1150 1.89 213.9 768.8 FILIAȘI Jiu 16.83 1282 1.02 77.4 237.2 ISCRONI Jiu 3.72 546 2.34 343.9 333.1 LONEA Jiu De Est 0.32 5.7 0.74 13.4 157.7 LONEA_TAIA Taia 0.35 136 0.13 52.1 252.7 PODARI Jiu 73.56 4020 2.51 137.4 750.7 RĂCARI Jiu 44.41 1095 1.95 48.0 497.5 ROVINARI Jiu 13.22 3300 1.45 363.0 262.3 SADU Jiu 7.66 938 1.93 236.3 309.9 STREHAIA Hușnița 0.31 41.2 0.32 41.8 403.8 TELEȘTI Bistrița 5.51 1640 6.45 1920.8 1200.5 TG. CĂRBUNEȘTI Gilort 4.94 1372 2.48 688.7 510.6 TURBUREA Gilort 14.63 6845 4.50 2107.6 1190.4 TURCENI Jilț 0.45 350 0.38 294.4 406.1 VALEA DE PEȘTI Valea de Pești 0.04 23.4 0.50 296.0 33.3 ZĂVAL Jiu 108.61 4720 3.42 148.6 1029.7 Gauging stations and upstream catchments considered for the study and their solid discharge average and maximum values (2001-2010) Note: Ravg and Rmax average & maximum suspended sediment load ravg and rmax average & maximum specific suspended sediment discharge SSC Average suspended sediment concentration The stations are organized in upstream - downstream order, river-wise. AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE 2. Methods

Methodology2. Methods4540Hysteresis-thenonlinear and complex hydro-sedimentarybehaviorduring35floods events(0'Kane,2005;Fovetet al.,2015)HysteresisIndex(adaptedafterLawleretal.,2006).252015For each flood of eachg.s.(10floods·22g.s.),amedian discharge (defined10as Q at 50% of the flow value range) was calculated : Qmed = k(Qmax -Qmin)812162024+Qmin,(whereQmax=thepeakdischargeof theflood,Qmin=thestartingQ[m3-s-1]discharge for the event, and “k"is set at O.5, being the position at which theloop breadth is investigated (the mid-point of the rising/ falling limb of theExampleofcalculationofHlindexhydrograph)The suspended sediment concentration values relativetoQmedof therisingThesymbols,and(SSCRL)and falling limbs(SSCrL)of the flood hydrograph were thenrepresent the rising limb,automaticallyinterpolated.floodpeak(orformultipleHImedcalculationresultedasfollows:values-segment crest),andfalling limb respectively.IfSSCRL>SSCL,HImed=(SSCRL/SSCFL)-1.If SSCRL<SSCFL), HImed=(-1/ (SSCRL/SSCFL) + 1.AIRAND WATERCOMPONENTSOFTHEENVIRONMENT INTERNATIONALCONFERENCE
7 Methodology Example of calculation of HI index 2. Methods 5 10 15 20 25 30 35 40 45 4 8 12 16 20 24 SSC[g∙m-3] Q[m3 ∙s -1 ] The symbols ∙ , and o represent the rising limb, flood peak (or for multiple values – segment crest), and falling limb respectively. AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE Hysteresis - the nonlinear and complex hydro-sedimentary behavior during floods events (O’Kane, 2005; Fovet et al., 2015) Hysteresis Index (adapted after Lawler et al., 2006). - For each flood of each g.s. (10 floods ∙ 22 g.s.), a median discharge (defined as Q at 50% of the flow value range) was calculated : Qmed = k∙(Qmax - Qmin) + Qmin, (where Qmax = the peak discharge of the flood, Qmin = the starting discharge for the event, and “k” is set at 0.5, being the position at which the loop breadth is investigated (the mid-point of the rising/ falling limb of the hydrograph) - The suspended sediment concentration values relative to Qmed of the rising (SSCRL) and falling limbs (SSCFL) of the flood hydrograph were then automatically interpolated. - HImed calculation resulted as follows: •If SSCRL > SSCL , HImed = (SSCRL/SSCFL) – 1. •If SSCRL < SSCFL), HImed = (-1/ (SSCRL/SSCFL)) + 1

Where do the fine sediments weighed at the gaugingstations come from?What time scales are involved insedimenttransferwithin JiuRiverBasin?AIRANDWATERCOMPONENTSOFTHEENVIRONMENTINTERNATIONALCONFERENCE
8 Where do the fine sediments weighed at the gauging stations come from ? What time scales are involved in sediment transfer within Jiu River Basin? AIR AND WATER COMPONENTS OF THE ENVIRONMENT INTERNATIONAL CONFERENCE

ResultsTheyearlysuspended sedimentproduction ratesareheat mapped below:20032007200820092010H.order/Year20012002200420052006RiverHydrologicalorderGauging station30.240.270.290.240.180.180.430.480.560.181CampuluiNeag1511.110.251.941.641.422.842.503.082.585.50320Barbateni0.258.892.461.28皖13.460.800.230.010.470.504Iscroni10.230.260.400.370.350.230.290.310.140.627Sadu80.340.200.280.460.700.610.320.300.400.37Jiu10Rovinari160.061.010.701.131.263.023.102.393.513.1514Filiasi180.070.750.532.861.543.133.861.431.343.3819Ricari140.280.450.210.351.830.682.150.782.201.2021Podari43.122.612.281.371.513.053.872.251.931.3822Zival60.530.440.500.330.570.260.260.180.370.4625Valea de PestiValea de Pesti0.030.030.040.020.230.080.400.110.050.25210.860.260.812.4910.022.191.141.022.064.225Lonea TaiaTaia190.450.780.350.617.352.041.371.152.143.16r6LoneaEastem Jiu104.420.620.570.620.512.540.900.751.741.84[t-ha-"an"]13.713.641.693.111.481.080.861.151.151.378CeleiOrleaMax170.0040.160.090.140.740.660.190.230.430.549TelestiBistrita94.820.905.063.12B11.24皖17.2510.543.054.563.8311JitTurceni122.820.521.212.225.573.971.530.561.944.3712TarguCarbunestiGilort-1130.222.129.5210.556.904.591.735.221.272.81110.370.500.070.280.360.770.720.400.140.2013Turburea20.130.250.230.580.960.520.500.470.750.6515BrosteniMotru221.492.369.534.601.221.682.064.841.594.7218Fata MotruluiMin16CoreovaCosusteaSuspendedsedimentproductionrate:17StrehaiaHusnitaWan20Bustuchin[t-ha-lan-'], Where Wr [kg; ti = R [kg/s] - T s]r=AmaradiaF
9 Results H.order/ Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 3 0.29 0.24 0.18 0.18 0.43 0.48 0.56 0.18 0.24 0.27 15 0.25 1.94 1.64 1.42 2.84 2.50 3.08 2.58 5.50 11.11 20 0.25 8.89 2.46 1.28 13.46 0.80 0.23 0.01 0.47 0.50 1 0.14 0.23 0.26 0.40 0.62 0.37 0.35 0.23 0.29 0.31 8 0.34 0.20 0.28 0.46 0.70 0.61 0.32 0.30 0.40 0.37 16 0.06 1.01 0.70 2.39 3.51 3.15 1.13 1.26 3.02 3.10 18 0.07 0.75 0.53 1.54 3.13 3.86 1.43 1.34 2.86 3.38 14 0.28 0.45 0.21 0.35 1.83 0.68 2.15 0.78 2.20 1.20 4 3.12 2.61 2.28 1.37 1.51 3.05 3.87 2.25 1.93 1.38 6 0.53 0.44 0.50 0.33 0.57 0.26 0.26 0.18 0.37 0.46 5 0.03 0.03 0.04 0.02 0.23 0.25 0.08 0.40 0.11 0.05 21 0.26 0.86 0.81 2.49 10.02 2.19 1.14 1.02 2.06 4.22 19 0.45 0.78 0.35 0.61 7.35 2.04 1.37 1.15 2.14 3.16 10 0.57 0.62 0.51 2.54 4.42 0.90 0.75 0.62 1.74 1.84 7 3.71 3.64 1.69 3.11 1.48 1.08 0.86 1.15 1.15 1.37 17 0.004 0.16 0.09 0.14 0.74 0.66 0.19 0.23 0.43 0.54 9 0.90 5.06 3.12 11.24 17.25 10.54 4.82 3.05 4.56 3.83 12 0.52 1.21 2.22 5.57 2.82 3.97 1.53 0.56 1.94 4.37 13 0.22 2.12 1.73 9.52 10.55 5.22 6.90 1.27 2.81 4.59 11 0.07 0.28 0.37 0.36 0.77 0.72 0.40 0.14 0.20 0.50 2 0.13 0.25 0.23 0.58 0.96 0.52 0.50 0.47 0.75 0.65 22 1.49 1.59 2.36 4.72 9.53 4.60 1.22 1.68 2.06 4.84 r = 𝑤an 𝐹 [t∙ha-1 ∙an-1 ] 𝐫 [t∙ha-1 ∙an-1 ] Suspended sediment production rate : The yearly suspended sediment production rates are heat mapped below: Hydrological order Gauging station River 1 Câmpu lui Neag Jiu 3 Bărbăţeni 4 Iscroni 7 Sadu 10 Rovinari 14 Filiasi 19 Răcari 21 Podari 22 Zăval 2 Valea de Peşti Valea de Peşti 5 Lonea Taia Taia 6 Lonea Eastern Jiu 8 Celei Orlea 9 Telesti Bistrița 11 Turceni Jilț 12 Târgu Cărbuneşti Gilort 13 Turburea 15 Broşteni Motru 18 Faţa Motrului 16 Corcova Cosustea 17 Strehaia Hușnița 20 Bustuchin Amaradia Max Min - 1 , Where WR [kg; t] = R [kg/s] ∙ T [s]

SeasonalvariationofNNJiuRiverTributariesthe suspendedAAsedimentdischarge(%)Mostpartofthesuspendedsediment volume is produced andtransferred in:spring (upperbasinofJiuRiver);winter(thecatchmentofMotrutributary)andsummer (the East Jiuand Amaradiariver)30case2015+010SeasonschromaticSeasonschromaticONSeasonal variation oftheHysteretictype051020Km051020KmLLLEWinterSpringSummerAutomn
Jiu River Tributaries Seasons chromatic Seasonal variation of the suspended sediment discharge (%) Seasons chromatic Most part of the suspended sediment volume is produced and transferred in: • spring (upper basin of Jiu River); • winter (the catchment of Motru tributary) and • summer (the East Jiu and Amaradia river) 0 5 10 15 20 25 30 No. of cases Seasonal variation of the Hysteretic type Spring Summer Automn Winter
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《全球变化科学》课程教学资源(讲义)01 Introducion of IRBM.pdf
- 《全球变化科学》课程教学大纲 Sustainable Approaches to Integrated River Basin Management.pdf
- 北京信息科技大学研究生院:管理科学与工程学院各学科课程教学大纲汇编(2024年).pdf
- 《科学技术史》课程教学课件(PPT)第七讲 二十世纪的科学技术综述.ppt
- 《科学技术史》课程教学课件(PPT)第六讲 科学史研究中的计量方法.ppt
- 《科学技术史》课程教学课件(PPT)第五讲 科学史中的“科学革命”.ppt
- 《科学技术史》课程教学课件(PPT)第二讲 20世纪的科学编史学.ppt
- 《科学技术史》课程教学课件(PPT)第一讲 科学史的兴起与发展概述.ppt
- 《科学技术史》课程教学课件(PPT)第四讲 科学哲学与科学史.ppt
- 《科学技术史》课程教学课件(PPT)第三讲 历史的辉格解释与科学史.ppt
- 《科学技术史》课程教学课件(PPT)第八讲 关于科学史分期理论的探讨.ppt
- 《科学技术史》课程教学课件(PPT)第十一讲 关于研究科学技术发展规律的若干问题.ppt
- 《科学技术史》课程教学课件(PPT)第十讲 关于科学史研究的几个问题.ppt
- 《科学技术史》课程教学课件(PPT)第九讲 关于近代技术史分期的理论探讨.ppt
- 《科学技术史》课程授课教案(讲义,编史学部分,共十一章).doc
- 《技术创新管理》课程教学课件(英文)Innovation Policy.pdf
- 《技术创新管理》课程教学课件(英文)Technological Change and Information Technologies.pdf
- 《技术创新管理》课程教学课件(英文)Innovation and the Labor Market.pdf
- 《技术创新管理》课程教学课件(英文)Network Industries and Open Innovation.pdf
- 《技术创新管理》课程教学课件(英文)Strategic Management in Network Industries.pdf
- 《全球变化科学》课程教学资源(讲义)03 Indicators for estimating the sub-catchments’ contribution to maximum flow during flood events in the Jiu River Basin.pdf
- 《全球变化科学》课程教学资源(讲义)04 Sediment connectivity within riverside - morphological processes coupling framework for identifying fine sediment sources within Jiu River Basin(Romania).pdf
- 《全球变化科学》课程教学资源(讲义)05 Tracking fluvial sediment sources through the lanthanide traces. Experimental method applied on the Jiu river basin(Romania).pdf
- 《全球变化科学》课程教学资源(讲义)06 Sustainable Approaches to Integrated River Basin Management.pdf
- 《全球变化科学》课程教学资源(讲义)07 River Basin Management in Europe & Danube River Basin.pdf
- 《全球变化科学》课程教学资源(讲义)08 Towards an integrated water resources management in R’Domsub-basin, Morocco. Mapping the interactions of water stakeholders.pdf
- 《全球变化科学》课程教学资源(讲义)09 Assessment of hydromorphologicalalterations and pressures in Europe(case study –Romania).pdf
- 《全球变化科学》课程教学资源(讲义)10 Management and restoration of degraded rivers - Challenges - practical aspects and follow-up methodologies.pdf
- 《IT职业素养》课程教学资源(作业习题)绪论(含答案).pdf
- 《IT职业素养》课程教学资源(学习指导)绪论.pdf
- 《IT职业素养》课程教学资源(讲义)绪论——赢得尊重.pdf
- 《IT职业素养》课程教学资源(讲稿)绪论——赢得尊重.pdf
- 《IT职业素养》课程教学资源(讲义)绪论——时代特征.pdf
- 《IT职业素养》课程教学资源(讲稿)绪论——时代特征.pdf
- 《IT职业素养》课程教学资源(讲义)绪论——职业定位.pdf
- 《IT职业素养》课程教学资源(讲义)绪论——职业发展.pdf
- 《IT职业素养》课程教学资源(讲稿)绪论——职业发展.pdf
- 《IT职业素养》课程教学资源(讲稿)绪论——职业定位.pdf
- 《IT职业素养》课程教学资源(作业习题)第一章 职业态度(含答案).pdf
- 《IT职业素养》课程教学资源(学习指导)第一章 职业态度.pdf