《微分方程》第五讲 恰当方程与积分因子

第五讲
第五讲

523恰当方程与积分因子 恰当方程 二、积分因子
§2.3 恰当方程与积分因子 一、恰当方程 二、积分因子

接下来,我们採讨另外一类可用初等解法求解的方 程类型.为此,将一阶正规形微分方程=f(xy)改写成 f(x,y)d-py=0,或更一般地,M(x,y)+Mx,)中=0的 形式.由前面的例子可以看到,把微分方程写成这种形 式的优点在于:既可以把y看成未知函数,x看成自变量; 也可以把x看成未知函数,y看成自变量.即变量x与变 壘y在方程中的地位是对称的,因此也常称形式为 』(xx+x,y)=0的方程为对称形式的微分方程

恰当方程
一、恰当方程

定义1:对于对称形式的微分方程M(x)dx+M(x,)=0,如果存在可 微二元函数xy),使得Mx)x+M(x,)=0是xy)的全微分,即 d0xy)=M(xy)x+Mxy冲, 则称M(xax+M(x,)=0为怡当方程,或全微分方程 例如,xx+y=0是怡当方程,因为可取Uxy)=x+y; yx+x=0是怡当方程,此时可取U(xy)=y; ydx- xdy 0也是恰当方程,此时可取U(x,y arctan x+y

对于恰当方程,我们有下面的结果: 命题1:如果M(xyax+Mx,)=0为恰当方程,即存在U(x,y)使得 du(r,y)=M(r, y)dx +N(r, y)dy t 则(x,y)=C为方程M(x)dx+M(x,y)=0的通解,这里c为任意常数

证明:只需证明(x,y=C为M(x)x+M(x,y)=0的解,对任意的常 数C,设函数方程x=C确定的隐函数为y=0(x,.于是, 了(x,队(xC)≡C两边关于x微分,得到dUxx,C)≡0,即 M(*,pr, C))dx+x( ,o(r, C))dp(, C)=0+ 故y=(,C为 M(x,y)dx+M(x,y)中=0 的解.因为c为任意常数,所以xy=C是 M(x,y)dx+M(x,y)中=0 的通解

例1:求方程yx+x=0的通解 解:因为y)=x+x,所以yx+x=0为恰当方程,且通解为 界=C.4

问题:如何判断M(xy)dx+Mx,y)=0是否为恰当方程?如果它是恰 当方程,如何求(x?4

为解决这个问题,我们先回忆数学分析中的两个重要结果 引理1:如果二元函数f(xy)的两个混合偏导数f,f在点(xn连续, 引理2:若M(xy,Mxy)在矩形城G:a<x<b,e<y<d内连续可微,则 含参量的积分y)=M(xy)在(ca)肉可微,且 币0)=可M(x)=M”)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《微分方程》第四讲 线性方程与常数变易法.ppt
- 《微分方程》第三讲 变量分离方程与变量变换.ppt
- 《微分方程》第二讲 § 基本概念.ppt
- 《微分方程》第一讲 微分方程模型.ppt
- 中央财经大学:《数学复习指南》第二章矩阵答案.pdf
- 中央财经大学:《数学复习指南》第四章微分中值定理与泰勒公式答案.pdf
- 中央财经大学:《数学复习指南》第五章微分方程答案.pdf
- 中央财经大学:《数学复习指南》第一章 随机事件和概率.pdf
- 中央财经大学:《数学复习指南》第一章行列式答案.pdf
- 中央财经大学:《数学复习指南》第七章无穷级数答案.pdf
- 中央财经大学:《数学复习指南》第六章一元微积分的应用答案.pdf
- 中央财经大学:《数学复习指南》第二章答案.pdf
- 中央财经大学:《数学复习指南》第三章一元函数积分学(不定积分)答案.pdf
- 中央财经大学:《数学复习指南》第一章 函数、极限、连续答案.pdf
- 兰州大学:《矩阵理论》第一讲 动态系统的描述.ppt
- 兰州大学:《矩阵理论》第五讲 内积空间.ppt
- 兰州大学:《矩阵理论》第四讲 化方阵A为Jordan标准形.ppt
- 兰州大学:《矩阵理论》第十讲 矩阵的微分和积分.ppt
- 兰州大学:《矩阵理论》第三讲 Jordan标准形.ppt
- 兰州大学:《矩阵理论》第七讲 酉矩阵.ppt
- 《微分方程》第六讲 一阶隐方程与参数表示.ppt
- 《微分方程》第七讲 解的存在唯一性定理与逐步逼近法.ppt
- 《微分方程》第八讲 解的延拓.ppt
- 《微分方程》第九讲 解对初值的连续性和可微性定理.ppt
- 《微分方程》第十讲 解对初值的连续性和可微性定理(续).ppt
- 《微分方程》第十一讲 奇解.ppt
- 《微分方程》第十二讲 线性微分方程的一般理论.ppt
- 《微分方程》第十三讲 常系数线性微分方程的解法.ppt
- 《微分方程》第十四讲 常系数线性微分方程的解法(续).ppt
- 《微分方程》第十五讲 Liapunov第二方法.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.4)行列式的基本性质.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.5)行列式依行(列)展开.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.6)行列式的计算.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.7)Gramer法则.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.8)Laplace展开定理.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.1)引言.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.2)排列.ppt
- 温州大学:《高等代数》课程教学资源(PPT课件)第二章 行列式(2.3)n阶行列式的定义.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第八章 图的基本概念.ppt
- 高等学校计算机专业教材:《离散数学》课程教学资源(PPT课件讲稿)第二章 二元关系.ppt