上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.3 罗—克拉美不等式

§6.3罗一克拉美不等式 前面两节中我们介绍了矩法估计和极大似然估计,并讨 论了估计量的优良性质;一致性和无偏性,现在我们再来讨 论一个更直观而重要的性质。 我们绍道,方差是一个随机变量门落在它的均值E门的 邻域内的集中或分散程度一个度量,所以一个好的估计量, 不仅仅应该是待估参数日的无偏估计,而且应该有尽可能小 的方差。因此,若参数日有两个无偏估计量色和色,且对一
§6.3 罗—克拉美不等式

切日∈重有D()≤D(月),则作为的8估计,a此a 好。 定义6.3若参数有两个偏估计月和自,且对一切日 ∈④有D(色)≤D(月),则称估计月此a有效。 在例66中知道8的极大似然估计2=5(m),显然它 不是8的无偏估计,但是当n→0时,Ea2→日,所以 是8的一个渐近无偏估计。日,的方差

D(82) (2+1)(2+2) 若我们令日-+1.显然日,是日的无偏估计, 其方差 D()-D心+1a,)=1 日2 a(a+2) 由此得出,当n≥2时,无偏估计此z无偏估计有效。 我们自然有这样一个想法,就是希望估计量的方差愈小 愈好。那么能够小到什么程度呢?也就是有没有下界?什么

条件下方差下界存在?下面我们就来讨论建立一个方差下界 的罗一克拉美不等式。 罗一克拉美不等式 设51,2,… 为取 自具有概率函数f(x;),8∈⊙=(a<8b)的母体号的 一个子样,a,b为已知常数,可以设a=-o,b=o。又刀=u (与1,…,号为)g(0是的一个无偏估计,且满足正则 条件: (1)集合{x,f(x,)}与8无关: (2)g间与(@存在,且对-切9∈⊙, ae

0:k=jeg9a ae (6.23) 0f-j,,9-fa =j-jw,,)0f6rk62w (3)令 K9EgG:⑨,0 ae 称为信息呈,则

D7≥[g(8]2 (6.25) 81(8) 且等式成立的充要条件为存在一个不依赖于1,专2,, m,但可能依赖于8的K使得等式 dlog f() =K(门-g(0)) (6.26) ae 以概率1成立。 特别当g(0)=8时,不等式(6.25)化为 1 D87≥ (6.27) 21(8)

这个不等式工罗和克拉美在差不多的时候提出,所以现 在就称它为罗一克拉美不等式,也称做信息不等式.(证明略) 有时我们称满足上述两个正则条件(1)和(2)的估计 量门为正规估计。由此我们看到,罗一克拉美不等式所规定 的下界不是整个无偏估计类的方差下界,而是无偏估计类中 一个子集一正规无偏估计类的方差下界。 为了计算信息量〔)方便起见,我们证明一个重要性 质。 性质 若 ae 882 (6.36) 则

8)=-E[ 1ogf5巴1 (6.37) ∂8 对于方差达到罗一克拉美不等式下界的估计,我们给它一个 名称如下。 定义6.4若8的一个无偏估计8使罗一克拉美不等 式中等式 D0= n代 2a 成立,则称日为日的有放估计

定义6.5若为8的一个无偏估计,且罗一克拉美 不等式下界存在,则称D)与8)的此s (6.37) D(8:) 为估计司,的有效率,这里重8瓜(31og了(传92)1: (例题略) 定义6.6当n→o时,一个估计的有效率e→1, 则称8为参数日的淅近有放估计

系满足定理61中条件得出的估计是渐近有效估计,因此 它是渐近正态、渐近无偏、渐近有效估计。 从这个系可以推出正态母体中参数口的极大似然估计S号 是渐近正态、渐近有效、渐近无偏的
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.2 极大似然估计.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.1 矩法估计.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第五章 数理统计的基本概念 §5.3 次序统计量及其分布.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第五章 数理统计的基本概念 §5.2 统计量及其分布.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第五章 数理统计的基本概念 §5.1 母体与子样、经验分布函数.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第四章 大数定律与中心极限定理 §4.3 中心极限定理.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第四章 大数定律与中心极限定理 §4.2 随机变量序列的两种收敛性.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第四章 大数定律与中心极限定理 §4.1 大数定理.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第三章 连续形型随机变量 §3.6 条件分布函数与条件期望、回归与第二类回归.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第三章 连续形型随机变量 §3.5 随机变量的数字特征、契贝晓夫有等式.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第三章 连续形型随机变量 §3.4 随机变量函数的分布.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第三章 连续形型随机变量 §3.3 多维随机变量及其分布.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第三章 连续形型随机变量 §3.2 连续型随机变量.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第三章 连续形型随机变量 §3.1 随机变量及分布函数.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第二章 离散型随机变量 § 2.6 条件分布与条件数学期望.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第二章 离散型随机变量 §2.5 方差的定义及性质.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第二章 离散型随机变量 § 2.4 数学期望的定义及性质.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第二章 离散型随机变量 § 2.3 随机变量函数的分布列.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第二章 离散型随机变量 § 2.2 多维随机变量,联合分布列和边际分布列.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第二章 离散型随机变量 §2.1 一维随机变量及分布.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.4 充分统计量.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.5 罗—勃拉克维尔定理和一致最小方差无偏估计.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.1 假设检验的基本思想和概念.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.2 参数假设检验.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.3 正态母体参数的置信区间.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.4 非参数假设检验.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第八章 方差分析和回归分析 §8.1 方差分析.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第八章 方差分析和回归分析 §8.2 线性回归分析的数学模型.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(学习指导)疑难分析与例题解析(主讲:李永明).doc
- 深圳大学:《数理方程与特殊函数》课程教学资源(教学大纲)Physical-Mathematical Equations and Special Functions.pdf
- 深圳大学:《数理方程与特殊函数》课程教学资源(参考资料)专业名词术语.pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(试卷习题)2016-2017学年第一学期(A卷).pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(试卷习题)2017-2018学年第一学期(A卷).pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)浮点数、求解方程的根(主讲:刘景铖).pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)牛顿法、插值.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)Chebyshev多项式插值、函数逼近与正交多项式、最小二乘法与最佳平方逼近.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)傅里页变换、三角插值.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)解线性方程组的直接和迭代方法、条件数、算子范数(operator norm).pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)正定矩阵、Courant-Fischer特征值的min-max刻画、矩阵的多项式.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法7.pdf