南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)正定矩阵、Courant-Fischer特征值的min-max刻画、矩阵的多项式

回顾与补充:解线性方程的迭代方法 通知:下周四的作业将作为take-home midterm 回顾送代方程xk+1=Axk十b 令x为其中一个不动点 ·Xk+1-X*=A(xk-x*) ·xk-X=Ak(x0-x*) 什么时候收敛? 对任意初始值xo,迭代方程xk+1=Axk+b都收敛到唯一的不动点 ·台Ak→0 ·台p(A)<1 也可能是因为x0选得好,使得xo一x,落在一个好的线性子空间里面 2
回顾与补充 :解线性方程的迭代方法 通知:下周四的作业将作为take-home midterm 回顾迭代方程��"� = ��� + � 令�∗为其中一个不动点 • ��"� − �∗ = �(�� − �∗) • �� − �∗ = ��(�� − �∗) 什么时候收敛? 对任意初始值��,迭代方程��#� = ��� + � 都收敛到唯一的不动点 • ⇔ �� → � • ⇔ � � < 1 也可能是因为��选得好,使得�� − �∗落在一个好的线性子空间里面 2

回顾与补充:解线性方程的迭代方法 考虑迭代方程xk+1=Axk+b 令x为其中一个不动点 ·Xk+1-X*=A(k-X*) ·Xk-X*=AK(x0-X*) 为什么Ak→0(即p(A)<1)的时候对任意初始值都收敛? ·Ilxk-xl=Ak(xo-x)‖≤‖Alxo-x.川 ·xk=Axk-1+b=A(Axk-2+b)+b=… ·xk=Akx0+(Ak-1+Ak-2+…+)b =Akxo+(IA)-1(I-Ak)b 存在唯一的不动点:x*=Ax*十b→x*=(I-A)一1b 3
回顾与补充:解线性方程的迭代方法 考虑迭代方程��"� = ��� + � 令�∗为其中一个不动点 • ��"� − �∗ = �(�� − �∗) • �� − �∗ = ��(�� − �∗) 为什么�� → � (即� � < 1)的时候对任意初始值都收敛? • �� − �∗ = ��(�� − �∗) ≤ �� �� − �∗ • �� = ���*� + � = � ���*� + � + � = ⋯ • �� = ���� + ��*� + ��*� + ⋯ + � � = ���� + � − � *� � − �� � • 存在唯一的不动点:�∗ = ��∗ + � ⇒ �∗ = � − � *�� 3

回顾与补充:解线性方程的迭代方法 考虑迭代方程xk+1=Axk+b 令x为其中一个不动点 ·Xk+1-X*=A(xk-x*) ·Xk-X*=Ak(x0-X*) 反过来,如果对任意初始值都收敛,为什么Ak→0(即p(A)<1)? 。 对任意初始值都收敛,即Vxo,xk-x*=Ak(x0一x*)→0 。 由于x0是任意的,x0一x*可以取到任意的向量 如果二个矩阵乘上任意一个向量,都是可以任意接近0的,则矩 阵必须是零矩阵 4
回顾与补充:解线性方程的迭代方法 考虑迭代方程��-� = ��� + � 令�∗为其中一个不动点 • ��-� − �∗ = �(�� − �∗) • �� − �∗ = ��(�� − �∗) 反过来,如果对任意初始值都收敛,为什么�� → � (即� � < 1)? • 对任意初始值都收敛,即∀��, �� − �∗ = ��(�� − �∗) → � • 由于 ��是任意的, �� − �∗可以取到任意的向量 • 如果一个矩阵乘上任意一个向量,都是可以任意接近0的,则矩 阵必须是零矩阵 4

(对称)正定矩阵 如果对所有向量x≠0,xTAx>0,则称A为正定矩阵(positive definite matrix)。亦记为A>0 如果对所有向量x≠0,xTAx≥0,则称A为半正定矩阵(positive semidefinite matrix,.PSD matrix)。亦记为A≥0 要解Ax=b,理论上可以转化为解ATAx=ATb ·ATA≥0 ATA是对称的 如果A可逆,则ATA也可逆 但是条件数可能会变坏:2-条件数会变为原来的平方 定理:实数对称矩阵A是正定的,当且仅当其所有特征值为正 定理:实数对称矩阵A是半正定的,当且仅当其所有特征值为非负 5
(对称)正定矩阵 如果对所有向量� ≠ 0,�.�� > 0,则称�为正定矩阵(positive definite matrix)。亦记为� ≻ 0 如果对所有向量� ≠ 0,�.�� ≥ 0,则称�为半正定矩阵(positive semidefinite matrix,PSD matrix) 。亦记为� ≽ 0 要解�� = �,理论上可以转化为解�!�� = �!� • �!� ≽ 0 • �!�是对称的 • 如果�可逆,则�!�也可逆 • 但是条件数可能会变坏:2-条件数会变为原来的平方 定理:实数对称矩阵�是正定的,当且仅当其所有特征值为正 定理:实数对称矩阵�是半正定的,当且仅当其所有特征值为非负 5

正定矩阵与高斯消元 回顾:如果对矩阵一行一行地进行高斯消元,则存在 是下三角阵L,上三角阵U使得 A=LU L-1A=U 如果A是对称的话:对矩阵的行进行消元的每一步操作,对 矩阵的列也同样可以消元! L-1A(L-1)T=? 若进一步假设A是正定的,则存在Cholesky2分解: A=CTC 其中C为上三角矩阵(对角线元素非零) 6
正定矩阵与高斯消元 回顾:如果对矩阵一行一行地进行高斯消元,则存在 是下三角阵�,上三角阵�使得 � = �� �'(� = � 如果�是对称的话:对矩阵的行进行消元的每一步操作,对 矩阵的列也同样可以消元! �'(� �'( ) =? 若进一步假设�是正定的,则存在Cholesky分解: � = �)� 其中 �为上三角矩阵 (对角线元素非零) 6

正定矩阵与特征值 定理: 实数对称矩阵A是正定的,当且仅当其所有特征值为正。 证明: (=>)设λ∈R和非零向量满足A=λv,则由正定性, vTAv=λmv>0 又因为vv>0,因此λ>0。 (0 因此A是正定的。 7
正定矩阵与特征值 定理:实数对称矩阵�是正定的,当且仅当其所有特征值为正。 证明: (=>) 设 � ∈ �和非零向量�满足�� = ��,则由正定性, ���� = ���� > � 又因为��� > �,因此 � > �。 ( � 因此 �是正定的。 7

Loewner order 对于同样大小的实数对称矩阵A,B,如果A一 B≥0,也记为A≥B 个充分条件:A的最小特征值也比B的最大特征 值要大(或者一样天) 如果它们拥有同样的特征向量,则每个对应的特 征值都是大于等于的关系 注意:这仅仅是一个偏序(partial order) 8
Loewner order 对于同样大小的实数对称矩阵�, �,如果� − � ≽ 0,也记为� ≽ � 一个充分条件: �的最小特征值也比 �的最大特征 值要大(或者一样大) 如果它们拥有同样的特征向量,则每个对应的特 征值都是大于等于的关系 注意:这仅仅是一个偏序(partial order) 8

特征值特征向量 Av=Av 。 v为A的特征向量(eigenvector) λ为对应于特征向量v的特征值(eigenvalue) A的特征多项式(characteristic polynomial)为det(A-xI) det(A一xI)=0的零点是A的所有特征值 特征值的代数重数,algebraic multiplicity:作为重根出现的次数 特征值的几何重数,geometric multiplicity:对应的特征空间的维度 对于可对角化的矩阵,代数重数=几何重数 定理.令A为n×n实数对称矩阵.则存在正规正交(orthonormal)特征向量,它 们能张成R”,且所有特征值均为实数 9
特征值特征向量 �� = �� • �为�的特征向量 (eigenvector) • �为对应于特征向量�的特征值(eigenvalue) • �的特征多项式(characteristic polynomial )为det � − �� • det � − �� = 0 的零点是�的所有特征值 特征值�的代数重数, algebraic multiplicity : �作为重根出现的次数 特征值�的几何重数, geometric multiplicity : �对应的特征空间的维度 对于可对角化的矩阵, 代数重数=几何重数 定理. 令 � 为�×�实数对称矩阵. 则存在正规正交(orthonormal)特征向量,它 们能张成��,且所有特征值均为实数 9

实数对称矩阵的谱分解 令A为m×m实数对称矩阵,V为正规正交 (orthonormal)的特征向量组成的矩阵 注意到VTV=I Av:=;y:→AV=VD→A=VDVT 10
实数对称矩阵的谱分解 令 � 为�×�实数对称矩阵, �为正规正交 (orthonormal)的特征向量组成的矩阵 注意到�6� = � ��7 = �7�7 ⇒ �� = �� ⇒ � = ���6 10

实数对称矩阵的谱分解 任意一个向量都可以表示成一组正规正交基{v}的线性组合 1-4呀 A:=→A=》时 A1=∑时, if A-1 exists. At=∑左明 i:入≠0 11
实数对称矩阵的谱分解 任意一个向量都可以表示成一组正规正交基 {�1} 的线性组合 � = ' 1 �1�1 2 ��1 = �1�1 ⇒ � = ' 1 �1�1�1 2 �34 = ' 1 �1 34�1�1 2 , �� �34 ������. �5 = ' 1:7#89 �1 34�1�1 2 11
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)解线性方程组的直接和迭代方法、条件数、算子范数(operator norm).pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)傅里页变换、三角插值.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)Chebyshev多项式插值、函数逼近与正交多项式、最小二乘法与最佳平方逼近.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)牛顿法、插值.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)浮点数、求解方程的根(主讲:刘景铖).pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(试卷习题)2017-2018学年第一学期(A卷).pdf
- 南京大学:《概率论与数理统计 Probability and Statistics》课程教学资源(试卷习题)2016-2017学年第一学期(A卷).pdf
- 深圳大学:《数理方程与特殊函数》课程教学资源(参考资料)专业名词术语.pdf
- 深圳大学:《数理方程与特殊函数》课程教学资源(教学大纲)Physical-Mathematical Equations and Special Functions.pdf
- 上饶师范学院:《概率论与数理统计》课程教学资源(学习指导)疑难分析与例题解析(主讲:李永明).doc
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第八章 方差分析和回归分析 §8.2 线性回归分析的数学模型.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第八章 方差分析和回归分析 §8.1 方差分析.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.4 非参数假设检验.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.3 正态母体参数的置信区间.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.2 参数假设检验.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第七章 假设检验 §7.1 假设检验的基本思想和概念.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.5 罗—勃拉克维尔定理和一致最小方差无偏估计.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.4 充分统计量.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.3 罗—克拉美不等式.ppt
- 上饶师范学院:《概率论与数理统计》课程教学资源(PPT课件)第六章 点估计 §6.2 极大似然估计.ppt
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法7.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法8.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法10.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法9.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法11.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法12.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法13.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法14.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法15.pdf
- 南京大学:《计算方法 Numerical method》课程教学资源(课件讲稿)计算方法16.pdf
- 西安电子科技大学:《线性代数》课程教学资源(教学大纲)Linear Algebra(主讲:李仁先).docx
- 西安电子科技大学:《线性代数》课程教学资源(课件讲义)线性代数讲义(第1-3章).pdf
- 西安电子科技大学:《线性代数》课程教学资源(课件讲义)线性代数讲义(第4-8章).pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)集合论——第7章 集合的基数.pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)计数与离散概率——第10章 基本计数技术.pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)集合论——第9章 归纳与递归.pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)关系——第12章 关系及其运算.pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)集合论——第8章 数论初步.pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)计数与离散概率——第11章 离散概率.pdf
- 南京大学:《离散数学 Discrete Mathmatics》课程教学资源(课件讲稿,2018)代数系统——第15章 代数系统.pdf