《应用化学专业英语》课程授课教案(讲稿)Unit 10-1

Specialized English for appliedchemistry应用化学专业英语讲稿讲课人:张秀凤
1 Specialized English for applied chemistry 应用化学专业英语讲稿 讲课人:张秀凤

第_11讲次课程名称:《应用化学专业英语一1》摘要What Is Chemical Engineering?授课题目(章、节)I课程内容讲解IⅡI重点单词和短语讲解本讲目的要求及重点难点:【目的要求】通过本讲课程的学习,对化学工程师有所了解【重点】文章中涉及到单词和词组,翻译的技巧【难点】句子结构分析及翻译的技巧内容Unit10What Is Chemical Engineering?什么是化学工程学In a wider sense, engineering may be defined as a scientific presentation of the techniques and facilitiesused in a particular industry. For example, mechanical engineering refers to the techniques and facilitiesemployed tomake machines.It is predominantly based onmechanical forces whichare used to change theappearance and/or physical properties of the materials being worked, while their chemical properties are leftunchanged. Chemical engineering encompasses the chemical processing of raw materials, based on chemical andphysico-chemical phenomena of high complexity.广义来讲,工程学可以定义为对某种工业所用技术和设备的科学表达。例如,机械工程学涉及的是制造机器的工业所用技术和设备。它优先讨论的是机械力,这种作用力可以改变所加工对象的外表或物理性质而不改变其化学性质。化学工程学包括原材料的化学过程,以更为复杂的化学和物理化学现象为基础。Thus, chemical engineering is that branch of engineering which is concerned with the study of the design,manufacture,and operation of plant and machineryin industrial chemical processes因此,化学工程学是工程学的一个分支,它涉及工业化化学过程中工厂和机器的设计、制造、和操作的研究。In its early days.chemical engineering was largely a descriptive science.Many of the early textbooks andmanuals on chemical engineeringwereencyclopedias of the commercial productionprocessesknown at thetime.Progress in science and industry has bought with it an impressive increase in the number of chemicalmanufactures.Today,petroleum for example serves as the source material for the production of about 80thousandchemicals.Theexpansion of the chemical process industries on theone hand and advances in thechemicalandtechnical sciences on theotherhavemade itpossibleto laytheoretical foundations for chemicalprocessing
2 课程名称:《应用化学专业英语-1》 第 11 讲次 摘 要 授课题目(章、节) What Is Chemical Engineering? Ⅰ课程内容讲解 Ⅱ重点单词和短语讲解 本讲目的要求及重点难点: 【目的要求】通过本讲课程的学习,对化学工程师有所了解 【重 点】 文章中涉及到单词和词组,翻译的技巧 【难 点】 句子结构分析及翻译的技巧 内 容 Unit 10 What Is Chemical Engineering? 什么是化学工程学 In a wider sense, engineering may be defined as a scientific presentation of the techniques and facilities used in a particular industry. For example, mechanical engineering refers to the techniques and facilities employed to make machines. It is predominantly based on mechanical forces which are used to change the appearance and/or physical properties of the materials being worked, while their chemical properties are left unchanged. Chemical engineering encompasses the chemical processing of raw materials, based on chemical and physico-chemical phenomena of high complexity. 广义来讲,工程学可以定义为对某种工业所用技术和设备的科学表达。例如,机械工程学涉及的是 制造机器的工业所用技术和设备。它优先讨论的是机械力,这种作用力可以改变所加工对象的外表或物 理性质而不改变其化学性质。化学工程学包括原材料的化学过程,以更为复杂的化学和物理化学现象为 基础。 Thus, chemical engineering is that branch of engineering which is concerned with the study of the design, manufacture, and operation of plant and machinery in industrial chemical processes. 因此,化学工程学是工程学的一个分支,它涉及工业化化学过程中工厂和机器的设计、制造、和操 作的研究。 In its early days, chemical engineering was largely a descriptive science. Many of the early textbooks and manuals on chemical engineering were encyclopedias of the commercial production processes known at the time. Progress in science and industry has bought with it an impressive increase in the number of chemical manufactures. Today, petroleum for example serves as the source material for the production of about 80 thousand chemicals. The expansion of the chemical process industries on the one hand and advances in the chemical and technical sciences on the other have made it possible to lay theoretical foundations for chemical processing

早期的化学工程学以描述性为主。许多早期的有关化学工程的教科书和手册都是那个时候已知的商品生产过程的百科全书。科学和工业的发展使化学品的制造数量迅速增加。举例来说,今天石油已经成为八万多种化学产品生产的原材料。一方面是化学加工工业扩张的要求,另一方面是化学和技术水平的发展为化学工艺建立理论基础提供了可能。As the chemical process industries forged ahead, new data, new relationships and newgeneralizations were added to the subject-matter of chemical engineering. Many branches in theirown right have separated from the main streamof chemical engineering, such as process and plantdesign, automation, chemical process simulation and modeling, etc.随着化学加工工业的发展,新的数据,新的关系和新的综论不断添加到化学工程学的目录中。然后又从主干上分出许多的分支,如工艺和工厂设计,自动化,化工工艺模拟和模型,等等。1.ABrief Historical OutlineHistorically, chemical engineering is inseparable from the chemical process industries. In itsearly days chemical engineering which came into being with the advent of early chemical trades wasa purelydescriptivedivision ofappliedchemistry.1.简要的历史轮廓从历史上来说,化学工程学与化学加工工业密不可分。在早期,化学工程学随着早期化学产品交易的发展而出现,是应用化学的纯描述性的分支。Themanufactureof basic chemical productson Europeappearstohavebeguninthe15thcentury when small, specialized businesses were first set up to turn out acids, alkalis, saltspharmaceuticalpreparations,andsomeorganiccompounds.在欧洲,基础化学产品的制造出现在15世纪。一些小的、专门的企业开始创立,生产酸、碱、盐、药物中间体和一些有机化合物。For all the rhetoric of nineteenth-century academic chemists in Britain urging the priority of thestudyofpurechemistryoverapplied,theirstudentswhobecameworkschemistswerelittlemorethan qualitative and quantitative analysts.Before the 1880s this was equally true of Germanchemical firms, whoremained content to retain academic consultants who pursued research withinthe university and who would occasionally provide the material for manufacturing innovation.Bythe 1880s, however, industrialists were beginning to recognize that the scaling up of consultantslaboratory preparations, and syntheses was a distinctly different activity from laboratoryinvestigation,They began to refer to this scaling problem and its solution as“chemicalengineering"possibly because the mechanical engineers who had already been introduced intoworksto who seemed best abletounderstand theprocess involved.Theacademicdichotomyofhead and hand died slowly由于十九世纪英国的学院化学家强调纯化学的研究高于应用化学,他们的要成为工业化学家的学生也只是定性和定量分析者。在19世纪80年代以前,德国的化学公司也是这样。他们愿意聘请那些在大学里进行研究的人作顾问,这些人偶尔为制造的革新提供一些意见。然而到了80年代,工业家们开始认识到要把顾问们在实验室的准备和合成工作进行放大是一个与实验室研究截然不同的活动。他们开始把这个放大的问题以及解决的方法交给“化学工程师”一这可能是受到已经进入工厂的机械工程师的表现的启发。由于机械工程师熟悉所涉及的加工工艺,是维修日益复杂化的工业生产中的蒸气机和高压泵的最合适的人选。学院研究中头和手两分的现象逐渐消亡。3
3 早期的化学工程学以描述性为主。许多早期的有关化学工程的教科书和手册都是那个时 候已知的商品生产过程的百科全书。科学和工业的发展使化学品的制造数量迅速增加。举例 来说,今天石油已经成为八万多种化学产品生产的原材料。一方面是化学加工工业扩张的要 求,另一方面是化学和技术水平的发展为化学工艺建立理论基础提供了可能。 As the chemical process industries forged ahead, new data, new relationships and new generalizations were added to the subject-matter of chemical engineering. Many branches in their own right have separated from the main stream of chemical engineering, such as process and plant design, automation, chemical process simulation and modeling, etc. 随着化学加工工业的发展,新的数据,新的关系和新的综论不断添加到化学工程学的目 录中。然后又从主干上分出许多的分支,如工艺和工厂设计,自动化,化工工艺模拟和模型, 等等。 1.A Brief Historical Outline Historically, chemical engineering is inseparable from the chemical process industries. In its early days chemical engineering which came into being with the advent of early chemical trades was a purely descriptive division of applied chemistry. 1.简要的历史轮廓 从历史上来说,化学工程学与化学加工工业密不可分。在早期,化学工程学随着早期化 学产品交易的发展而出现,是应用化学的纯描述性的分支。 The manufacture of basic chemical products on Europe appears to have begun in the 15th century when small, specialized businesses were first set up to turn out acids, alkalis, salts, pharmaceutical preparations, and some organic compounds. 在欧洲,基础化学产品的制造出现在 15 世纪。一些小的、专门的企业开始创立,生产酸、 碱、盐、药物中间体和一些有机化合物。 For all the rhetoric of nineteenth-century academic chemists in Britain urging the priority of the study of pure chemistry over applied, their students who became works chemists were little more than qualitative and quantitative analysts. Before the 1880s this was equally true of German chemical firms, who remained content to retain academic consultants who pursued research within the university and who would occasionally provide the material for manufacturing innovation. By the 1880s, however, industrialists were beginning to recognize that the scaling up of consultants’ laboratory preparations, and syntheses was a distinctly different activity from laboratory investigation. They began to refer to this scaling problem and its solution as “chemical engineering”—possibly because the mechanical engineers who had already been introduced into works to who seemed best able to understand the process involved. The academic dichotomy of head and hand died slowly. 由于十九世纪英国的学院化学家强调纯化学的研究高于应用化学,他们的要成为工业化学 家的学生也只是定性和定量分析者。在 19 世纪 80 年代以前,德国的化学公司也是这样。他 们愿意聘请那些在大学里进行研究的人作顾问,这些人偶尔为制造的革新提供一些意见。然 而到了 80 年代,工业家们开始认识到要把顾问们在实验室的准备和合成工作进行放大是一个 与实验室研究截然不同的活动。他们开始把这个放大的问题以及解决的方法交给“化学工程 师”—这可能是受到已经进入工厂的机械工程师的表现的启发。由于机械工程师熟悉所涉及 的加工工艺,是维修日益复杂化的工业生产中的蒸气机和高压泵的最合适的人选。学院研究 中头和手两分的现象逐渐消亡

Unit operation. In Britain when in 1881 there was an attempt to name the new Society ofChemical industry as the“"Society of Chemical engineers",the suggestion was turned down.Onthe other hand, as a result of growing pressure from the industrial sector the curricula of technicalinstitutions began to reflect, at last, the need for chemical engineers rather than competentanalysts.No longer wasmeredescription of existing industrial processes to suffice.Instead theexpectation was that theprocesses generic to various specific industries would be analyzed, thusmakingroomforthe introduction ofthermodynamicperspectives,as well asthosebeingopenedupbuythenewphysical chemistryofkinetics,solutions andphases.单元操作。1881年英国曾经准备把化学工业的一个新的协会命名为化学工程师协会”,这个建议遭到了拒绝。另一方面,由于受到来自工业界日益加重的压力,大学的课程开始体现出除了培养分析工作者还要培养化学工程师的要求。现在仅仅对现有工业过程进行描述已经不够了,需要对各种特殊工业进行工艺属性的分析。这就为引入热力学及动力学、溶液和相等物理化学新思想提供了空间。Akey figure in this transformation was the chemical consultant, George Davis (1850-1907),the first secretary of the Society of Chemical Industry.In 1887 Davis, then a lecture at theManchester Technical School,gave a series of lectures on chemical engineering,which he definedasthe studyof"theapplication ofmachineryand plant to theutilization of chemical action on thelarge scale".The course, which revolved around the type of plant involved in large-scale industrialoperations such as drying, crashing, distillation fermentation, evaporation and crystallization,slowlybecamerecognized asa model for courseselsewhere,not only in Britain, but overseas.Thefirst fully fledged course in chemical engineering in Britain was not introduced until 1909,thoughinAmerica,LewisNorton(1855-1893)ofMITpioneered aDavis-typecourseas earlyas1888在这个转变期,一位关键的人物是化学顾问GeorgeDavis,化学工业协会的首任秘书。1887年Davis那时是Manchester专科学校的一名讲师,做了一系列有关化学工程学的讲座。他把化学工程学定义为对“大规模化学生产中所应用的机器和工厂”的研究。这们课程包括了大规模工业化操作的工厂的各种类型,如干燥、破碎、蒸馅、发酵、蒸发和结晶。后来逐渐在别的地方而不仅仅在英国,而是国外,成为许多课程的维形。英国直到1909年化学工程学才成为一门较为完善的课程,而在美国,MIT的LewisNorton早在1888年就已率先开出了Davis型课程。In 1915, Arthur D. Little, in a report on MIT's programme, referred to it as the study of "unitoperations"” and this neatly encapsulated the distinctive feature of chemical engineering in thetwentieth century. The reasons for the success of the Davis movement are clear:it avoidedrevealing the secrets of specific chemical processesprotected by patents or byan owner'sreticencefactors that had always seriously inhibited manufacturers from supporting academicprogrammes of training in thepast.Davis overcamethis difficultyby converting chemicalindustries into separate phenomena which could be studied independently"and, indeed,experimentedwith inpilotplantswithinauniversityortechnical collegeworkshop1915年,ArthurD.little在一份MIT的计划书中,提出了“单元操作”这个概念,这几乎为二十世纪化学工程学的突出特点做了定性。Davis这一倡议的成功原因是很明显的:它避免了泄露特殊化学过程中受专利权或某个拥有者的保留权所保护的秘密。过去这种泄露已经严重限制了制造者对学院研究机构训练计划的支持。Davis把化学工业分解为"能独立进行研究的单个的工序”从而克服了这个困难。并且在大学或专科学校的工厂里用中试车间进行了试验
4 Unit operation. In Britain when in 1881 there was an attempt to name the new Society of Chemical industry as the “Society of Chemical engineers”, the suggestion was turned down. On the other hand, as a result of growing pressure from the industrial sector the curricula of technical institutions began to reflect, at last, the need for chemical engineers rather than competent analysts. No longer was mere description of existing industrial processes to suffice. Instead the expectation was that the processes generic to various specific industries would be analyzed, thus making room for the introduction of thermodynamic perspectives, as well as those being opened up buy the new physical chemistry of kinetics, solutions and phases. 单元操作。1881 年英国曾经准备把化学工业的一个新的协会命名为“化学工程师协会”, 这个建议遭到了拒绝。另一方面,由于受到来自工业界日益加重的压力,大学的课程开始体 现出除了培养分析工作者还要培养化学工程师的要求。现在仅仅对现有工业过程进行描述已 经不够了,需要对各种特殊工业进行工艺属性的分析。这就为引入热力学及动力学、溶液和 相等物理化学新思想提供了空间。 A key figure in this transformation was the chemical consultant, George Davis (1850-1907), the first secretary of the Society of Chemical Industry. In 1887 Davis, then a lecture at the Manchester Technical School, gave a series of lectures on chemical engineering, which he defined as the study of “the application of machinery and plant to the utilization of chemical action on the large scale”. The course, which revolved around the type of plant involved in large-scale industrial operations such as drying, crashing, distillation, fermentation, evaporation and crystallization, slowly became recognized as a model for courses elsewhere, not only in Britain, but overseas. The first fully fledged course in chemical engineering in Britain was not introduced until 1909;though in America, Lewis Norton (1855-1893) of MIT pioneered a Davis-type course as early as 1888. 在这个转变期,一位关键的人物是化学顾问 George Davis,化学工业协会的首任秘书。 1887 年 Davis 那时是 Manchester 专科学校的一名讲师,做了一系列有关化学工程学的讲座。 他把化学工程学定义为对“大规模化学生产中所应用的机器和工厂”的研究。这们课程包括了 大规模工业化操作的工厂的各种类型,如干燥、破碎、蒸馏、发酵、蒸发和结晶。后来逐渐 在别的地方而不仅仅在英国,而是国外,成为许多课程的雏形。英国直到 1909 年化学工程 学才成为一门较为完善的课程,而在美国,MIT 的 Lewis Norton 早在 1888 年就已率先开出 了 Davis 型课程。 In 1915, Arthur D. Little, in a report on MIT’s programme, referred to it as the study of “unit operations” and this neatly encapsulated the distinctive feature of chemical engineering in the twentieth century. The reasons for the success of the Davis movement are clear: it avoided revealing the secrets of specific chemical processes protected by patents or by an owner’s reticence—factors that had always seriously inhibited manufacturers from supporting academic programmes of training in the past. Davis overcame this difficulty by converting chemical industries “into separate phenomena which could be studied independently” and, indeed, experimented with in pilot plants within a university or technical college workshop. 1915 年,Arthur D. little 在一份 MIT 的计划书中,提出了“单元操作”这个概念,这几乎 为二十世纪化学工程学的突出特点做了定性。Davis 这一倡议的成功原因是很明显的:它避 免了泄露特殊化学过程中受专利权或某个拥有者的保留权所保护的秘密。过去这种泄露已经 严重限制了制造者对学院研究机构训练计划的支持。Davis 把化学工业分解为“能独立进行研 究的单个的工序”从而克服了这个困难。并且在大学或专科学校的工厂里用中试车间进行了 试验

In effect he applied the ethics of industrial consultancy by which experience was transmitted“"from plant to plant and from process to process in such a way which did not compromise theprivate or specific knowledge which contributed to a given plant's profitability" The concept ofunit operations held that any chemical manufacturing process could be resolved into a coordinatedseries of operations such as pulverizing, drying, roasting, electrolyzing, and so on Thus, forexample,theacademicstudyofthe specificaspects ofturpentinemanufacturecouldbereplacedbythegeneric study of distillation,a process common to many other industries.Aquantitativeform of the unit operations concept emerged around 1920s, just in time for the nation's firstgasoline crisis. The ability of chemical engineers to quantitatively characterize unit operationssuch as distillation allowed for the rational design of thefirst modern oil refineries.Thefirst boomof employment ofchemical engineers in theoil industrywas on他采用了工业顾问公司的理念,经验传递从一个车间到另一个车间,从一个过程到另一个过程。这种方式不包含限于某个给定工厂的利润的私人的或特殊的知识。单元操作的概念使每一个化学制造过程都能分解为一系列的操作步骤,如研末、干燥、烤干、电解等等。例如,学校对松节油制造的特殊性质的研究可以用蒸馏属性研究来代替。这是一个对许多其它工业制造也很普通的工艺过程。单元操作概念的定量形式大概出现在1920年,刚好是在第一次全球石油危机出现的时候。化学工程师能赋予单元操作定量特性的能力使得他们合理地设计了第一座现代炼油厂。石油工业第一次大量聘请化学工程师的繁荣时代开始了。Duringthis period of intensivedevelopment of unit operations,other classical toolsofchemical engineering analysis were introduced or were extensively developed. These includedstudiesof thematerial and energybalanceofprocessesandfundamentalthermodynamicstudiesofmulticomponentsystems在单元操作密集繁殖的时代,化学工程学另一些经典的分析手段也开始被引入或广泛发展。这包括过程中材料和能量平衡的研究以及多组分体系中基础热力学的研究。Chemical engineers played akey role in helping theUnited States and its allies win WorldWarII.They developed routes to synthetic rubberto replace the sources of natural rubberthatwere lost to the Japanese early in the war.They provided the uranium-235 needed to build theatomicbomb,scalingupthemanufacturingprocess inonestepfromthelaboratorytothelargestindustrial plantthat hadeverbeenbuiltAndtheywereinstrumental inperfectingthemanufactureof penicillin, which saved the lives of potentially hundreds of thousands of wounded soldiers.化学工程师在帮助美国及其盟国赢得第二次世界大战的胜利中起了关键的作用。他们发展了合成橡胶的方法以代替在战争初期因日本的封锁而失去来源的天然橡胶。他们提供了制造原子弹所需要的铀-235,把制造过程从实验室研究一步放大到当时最大规模的工业化工厂,而他们在完善penicillin的生产工艺中也是功不可没,它挽救了几十万受伤士兵的生命。重点单词短语bedifinedas下定义intheirownright用他们自有的理论beinseparablefrom不可分离的themainstreamof主流5
5 In effect he applied the ethics of industrial consultancy by which experience was transmitted “from plant to plant and from process to process in such a way which did not compromise the private or specific knowledge which contributed to a given plant’s profitability”. The concept of unit operations held that any chemical manufacturing process could be resolved into a coordinated series of operations such as pulverizing, drying, roasting, electrolyzing, and so on. Thus, for example, the academic study of the specific aspects of turpentine manufacture could be replaced by the generic study of distillation, a process common to many other industries. A quantitative form of the unit operations concept emerged around 1920s, just in time for the nation’s first gasoline crisis. The ability of chemical engineers to quantitatively characterize unit operations such as distillation allowed for the rational design of the first modern oil refineries. The first boom of employment of chemical engineers in the oil industry was on. 他采用了工业顾问公司的理念,经验传递从一个车间到另一个车间,从一个过程到另一 个过程。这种方式不包含限于某个给定工厂的利润的私人的或特殊的知识。单元操作的概念 使每一个化学制造过程都能分解为一系列的操作步骤,如研末、干燥、烤干、电解等等。例 如,学校对松节油制造的特殊性质的研究可以用蒸馏属性研究来代替。这是一个对许多其它 工业制造也很普通的工艺过程。单元操作概念的定量形式大概出现在 1920 年,刚好是在第 一次全球石油危机出现的时候。化学工程师能赋予单元操作定量特性的能力使得他们合理地 设计了第一座现代炼油厂。石油工业第一次大量聘请化学工程师的繁荣时代开始了。 During this period of intensive development of unit operations, other classical tools of chemical engineering analysis were introduced or were extensively developed. These included studies of the material and energy balance of processes and fundamental thermodynamic studies of multicomponent systems. 在单元操作密集繁殖的时代,化学工程学另一些经典的分析手段也开始被引入或广泛发 展。这包括过程中材料和能量平衡的研究以及多组分体系中基础热力学的研究。 Chemical engineers played a key role in helping the United States and its allies win World War Ⅱ. They developed routes to synthetic rubber to replace the sources of natural rubber that were lost to the Japanese early in the war. They provided the uranium-235 needed to build the atomic bomb, scaling up the manufacturing process in one step from the laboratory to the largest industrial plant that had ever been built. And they were instrumental in perfecting the manufacture of penicillin, which saved the lives of potentially hundreds of thousands of wounded soldiers. 化学工程师在帮助美国及其盟国赢得第二次世界大战的胜利中起了关键的作用。他们发 展了合成橡胶的方法以代替在战争初期因日本的封锁而失去来源的天然橡胶。他们提供了制 造原子弹所需要的铀-235,把制造过程从实验室研究一步放大到当时最大规模的工业化工 厂,而他们在完善 penicillin 的生产工艺中也是功不可没,它挽救了几十万受伤士兵的生命。 重点单词短语 be difined as 下定义 in their own right 用他们自有的理论 be inseparable from 不可分离的 the main stream of 主流

【本讲课程的小结】1、课程内容讲解2、重点单词和短语讲解【本讲课程的作业】1、review2、pre-reading unit10 (1~2part), especialy new technical words and sub-technical words6
6 【本讲课程的小结】 1、 课程内容讲解 2、重点单词和短语讲解 【本讲课程的作业】 1、review 2、pre-reading unit10(1~2part),especialy new technical words and sub-technical words synthetic dystuff 2. In 1860 , the Industrial Revolution silica and sodium carbonate bleaching powder SiO2 NaCO3 glassmakin g bleaching powder 1 .In 1800 , the Industrial Revolution cotton CaClO NaOH alkal soapmaking Gunpowder i (火 药) Cmauve oatings(苯胺漆) 紫) 3. the start of the twentieth century (1914~1933) synthetic pharmaceutical (合成药物) 5. 1960~1970) 4. 1930~1940) 6. a very diverse Since 1980 sector of manufacturing industry plays a central role for our life and production polyethylene, 聚乙烯 PE polypropylene, 聚丙烯 PP nylon, 尼龙, 聚酰胺 polyesters 聚 酯 PET epoxy resins. 环氧树脂 synthetic polymers petrochemicals Development of inorganic chemicals ammonia
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《应用化学专业英语》课程授课教案(讲稿)Unit 5-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 5-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 4-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 4-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 3-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 3-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 2-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 2-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 1-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 1-1.doc
- 《化学工程与工艺专业英语》课程教学大纲 Chemical Engineering and Technology Specialized English.doc
- 《化工过程模拟》课程教学课件(讲稿)第十二讲 反应器单元的仿真设计(三).pdf
- 《化工过程模拟》课程教学课件(讲稿)第十一讲 反应器单元的仿真设计(二).pdf
- 《化工过程模拟》课程教学课件(讲稿)第十讲 反应器单元的仿真设计(一).pdf
- 《化工过程模拟》课程教学课件(讲稿)第九讲 分离单元的仿真设计(三).pdf
- 《化工过程模拟》课程教学课件(讲稿)第八讲 分离单元的仿真设计(二).pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 User GuideVol 3.pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 User GuideVol 2.pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 User GuideVol 1.pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 用户手册中文版(用户指南).pdf
- 《应用化学专业英语》课程授课教案(讲稿)Unit 10-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 11-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 11-2.doc
- 《化工热力学》课程教学大纲 Chemical Engineering Thermodynamics.doc
- 《化工热力学》课程授课教案(讲稿)第三章 纯流体热力学性质的计算.pdf
- 《化工热力学》课程授课教案(讲稿)第七章 压缩、制冷和蒸汽动力循环.pdf
- 《化工热力学》课程授课教案(讲稿)第六章 化工过程的能量分析.pdf
- 《化工热力学》课程授课教案(讲稿)第二章 流体的PVT关系和状态方程.pdf
- 《化工热力学》课程作业习题(含答案)第三章 纯流体热力学性质的计算.pdf
- 《化工热力学》课程作业习题(含答案)第六章 化工过程的能量分析.pdf
- 《化工热力学》课程作业习题(含答案)第七章 压缩、膨胀、动力循环和制冷循环.pdf
- 《化工热力学》课程作业习题(含答案)第四章 溶液热力学基础.pdf
- 《化工热力学》课程作业习题(含答案)第二章 流体的PVT关系及状态方程.pdf
- 《化工热力学》课程教学资源(知识点)重点难点考点剖析.pdf
- 《化工热力学》课程教学资源(PPT课件)第六章 化工过程的能量分析.ppt
- 《化工热力学》课程教学资源(PPT课件)第四章 溶液热力学基础(溶液热力学性质的计算).ppt
- 《化工热力学》课程教学资源(PPT课件)第三章 纯流体热力学性质的计算.ppt
- 《化工热力学》课程教学资源(PPT课件)第七章 压缩、制冷与蒸汽动力循环.ppt
- 《化工热力学》课程教学资源(PPT课件)第二章 流体的PVT关系和状态方程.ppt
- 《化工原理》实验课程教学大纲 B.doc
