《应用化学专业英语》课程授课教案(讲稿)Unit 10-2

Specialized English for appliedchemistry应用化学专业英语讲稿讲课人:张秀凤
1 Specialized English for applied chemistry 应用化学专业英语讲稿 讲课人:张秀凤

第_12_讲次课程名称:《应用化学专业英语一1》摘要What Is Chemical Engineering?授课题目(章、节)I课程内容讲解ⅡI重点单词和短语讲解本讲目的要求及重点难点:【目的要求】通过本讲课程的学习,对化学工程师有所了解【重点】文章中涉及到单词和词组,翻译的技巧【难点】句子结构分析及翻译的技巧内容The Engineering Science Movement. Dissatisfied with empirical descriptions of process equipmentperformance, chemical engineers began to reexamine unit operations from a morefundamental point of viewThe phenomena that take place in unit operations were resolved into sets of molecular events. Quantitativemechanistic models for these events were developed and used to analyze existing equipment.Mathematicalmodels of processes and reactors were developed and applied to capital-intensive U.S. industries such ascommodity petrochemicals.工程学运动。由于不满意对工艺设备运行的经验描述,化学工程师开始从更基础的角度再审视单元操作。发生在单元操作中的现象可以分解到分子运动水平。这些运动的定量机械模型被建立并用于分析已有的仪器设备。过程和放应器的数学模型也被建立并被应用于资金密集型的美国工业如石油化学工业。Parallel to the growth of the engineering science movement was the evolution of the core chemicalengineering curriculum in its present form. Perhaps more than any other development, the core curriculum isresponsible for the confidence with which chemical engineers integrate knowledge from many disciplines in thesolutionofcomplexproblems.与工程学同时发展的是现在的化学工程课程设置的变化。也许与其它发展相比较,核心课程为化学工程师运用综合技能解决复杂问题更加提供了信心。The core curriculum provides a background in some of the basic sciences, including mathematics, physics,and chemistry. This background is needed to undertake a rigorous study of the topics central to chemicalengineering, including:核心课程固定了一些基础科学为背景,包括数学,物理,和化学。这些背景对于从事以化学工程为中心的课题的艰苦研究是必须的,包括:
2 课程名称:《应用化学专业英语-1》 第 12 讲次 摘 要 授课题目(章、节) What Is Chemical Engineering? Ⅰ课程内容讲解 Ⅱ重点单词和短语讲解 本讲目的要求及重点难点: 【目的要求】通过本讲课程的学习,对化学工程师有所了解 【重 点】 文章中涉及到单词和词组,翻译的技巧 【难 点】 句子结构分析及翻译的技巧 内 容 The Engineering Science Movement. Dissatisfied with empirical descriptions of process equipment performance, chemical engineers began to reexamine unit operations from a more fundamental point of view. The phenomena that take place in unit operations were resolved into sets of molecular events. Quantitative mechanistic models for these events were developed and used to analyze existing equipment. Mathematical models of processes and reactors were developed and applied to capital-intensive U.S. industries such as commodity petrochemicals. 工程学运动。由于不满意对工艺设备运行的经验描述,化学工程师开始从更基础的角度再审视单元 操作。发生在单元操作中的现象可以分解到分子运动水平。这些运动的定量机械模型被建立并用于分析 已有的仪器设备。过程和放应器的数学模型也被建立并被应用于资金密集型的美国工业如石油化学工业。 Parallel to the growth of the engineering science movement was the evolution of the core chemical engineering curriculum in its present form. Perhaps more than any other development, the core curriculum is responsible for the confidence with which chemical engineers integrate knowledge from many disciplines in the solution of complex problems. 与工程学同时发展的是现在的化学工程课程设置的变化。也许与其它发展相比较,核心课程为化学 工程师运用综合技能解决复杂问题更加提供了信心。 The core curriculum provides a background in some of the basic sciences, including mathematics, physics, and chemistry. This background is needed to undertake a rigorous study of the topics central to chemical engineering, including: 核心课程固定了一些基础科学为背景,包括数学,物理,和化学。这些背景对于从事以化学工程为 中心的课题的艰苦研究是必须的,包括:

Multicomponent thermodynamics and kinetics,-Transport phenomenaUnit operations,-Reaction engineeringProcessdesign and control, and-Plant design and systems engineering多组分体系热力学及动力学·传输现象·单元操作反应工程过程设计和控制工厂设计和系统工程This training has enabled chemical engineers tobecome leading contributors to a numberofinterdisciplinary areas, including catalysis, colloid science and technology, combustion,electro-chemical engineering,andpolymerscience andtechnology这种训练使化学工程师们成为了在许多学科领域做出了突出贡献的人,包括在催化学、胶体科学和技术、燃烧、电化学工程、以及聚合物科学和技术方面。2.Basic Trends In Chemical EngineeringOver the next few years, a confluence of intellectual advances, technologic challenges, andeconomicdrivingforces will shapea newmodel ofwhat chemical engineering is and what chemicalengineering do2.化学工程学的基本发展趋势未来几年里,科学的进步,技术的竞争以及经济的驱动力将为化学工程是什么以及化学工程能做什么打造一个新的模型。The focus of chemical engineering has always been industrial processes that change thephysical state or chemical composition of materials. Chemical engineers engage in the synthesis,design, testing scale-up, operation, control and optimization of these processes. The traditional levelof size and complexity at which they have worked on these problems might be termed themesoscale. Examples of this scale include reactors and equipment for single processes (unitoperations) and combinations of unit operations in manufacturing plants. Future research at themesoscalewill be increasingly supplementedby dimensions-themicroscale and thedimensionsofextremelycomplexsystems-themacroscale化学工程学的焦点一直是改变物体的物理状态或化学性质的工业过程。化学工程师致力于这些过程的合成、设计、测试放大、操作、控制和优选。他们从事于解决的这些问题,传统的规模水平和复杂程度可称之为中等的,这种规模的例子包括有单个过程(单元操作)所使用的反应器和设备以及制造厂里单元操作的组合,未来的研究将在规模上逐渐进行补充。除了中等规模,还有微型的以及更为复杂的系统----巨型的规模。Chemical engineers of the future will be integrating a wider range of scales than any otherbranch of engineering. For example, some may work to relate the macroscale of the environment tothemesoscaleof combustionsystems andthemicroscaleof molecularreactionsand transportOthermay work torelate the macroscaleperformanceof a composite aircraftto themesoscale chemicalreactor inwhichthewingwasformed,thedesignof thereactorperhapshavingbeen influencedbystudies of the microscale dynamics of complex liquids.3
3 Multicomponent thermodynamics and kinetics, ·Transport phenomena, ·Unit operations, ·Reaction engineering, ·Process design and control, and ·Plant design and systems engineering. ·多组分体系热力学及动力学 ·传输现象 ·单元操作 ·反应工程 ·过程设计和控制 ·工厂设计和系统工程 This training has enabled chemical engineers to become leading contributors to a number of interdisciplinary areas, including catalysis, colloid science and technology, combustion, electro-chemical engineering, and polymer science and technology. 这种训练使化学工程师们成为了在许多学科领域做出了突出贡献的人,包括在催化学、 胶体科学和技术、燃烧、电化学工程、以及聚合物科学和技术方面。 2.Basic Trends In Chemical Engineering Over the next few years, a confluence of intellectual advances, technologic challenges, and economic driving forces will shape a new model of what chemical engineering is and what chemical engineering do. 2.化学工程学的基本发展趋势 未来几年里,科学的进步,技术的竞争以及经济的驱动力将为化学工程是什么以及化学 工程能做什么打造一个新的模型。 The focus of chemical engineering has always been industrial processes that change the physical state or chemical composition of materials. Chemical engineers engage in the synthesis, design, testing scale-up, operation, control and optimization of these processes. The traditional level of size and complexity at which they have worked on these problems might be termed the mesoscale. Examples of this scale include reactors and equipment for single processes (unit operations) and combinations of unit operations in manufacturing plants. Future research at the mesoscale will be increasingly supplemented by dimensions—the microscale and the dimensions of extremely complex systems—the macroscale. 化学工程学的焦点一直是改变物体的物理状态或化学性质的工业过程。化学工程师致力 于这些过程的合成、设计、测试放大、操作、控制和优选。他们从事于解决的这些问题,传 统的规模水平和复杂程度可称之为中等的,这种规模的例子包括有单个过程(单元操作)所 使用的反应器和设备以及制造厂里单元操作的组合,未来的研究将在规模上逐渐进行补充。 除了中等规模,还有微型的以及更为复杂的系统-巨型的规模。 Chemical engineers of the future will be integrating a wider range of scales than any other branch of engineering. For example, some may work to relate the macroscale of the environment to the mesoscale of combustion systems and the microscale of molecular reactions and transport. Other may work to relate the macroscale performance of a composite aircraft to the mesoscale chemical reactor in which the wing was formed, the design of the reactor perhaps having been influenced by studies of the microscale dynamics of complex liquids

未来的化学工程师将比任何其他分支的工程师在更为宽广的规模范围紧密协作。例如,有些人可能从事于了解大范围的环境与中等规模的燃烧系统以及微型的分子水平的反应和传递之间的关系。另一些人则从事了解合成的飞机的的性能与机翼所用化学反应器及反应器的设计和对此有影响的复杂流体动力学的研究工作。Thus, future chemical and engineers will conceive and rigorously solve problems on acontinuum of scales ranging from microscale.They will bring new tools and insights to researchandpracticefromotherdisciplines:molecularbiology,chemistry,solid-statephysics,materialsscience, and electrical engineering. And they will make increasing use of computers, artificialintelligence, and expert system in problem solving, in product and process design, and inmanufacturing.因此,未来的化学工程师们要准备好解决从微型的到巨型的规模范围内出现的问题。他们要用来自其它学科的新的工具和理念来研究和实践:分子生物学,化学,固体物理学,材料学和电子工程学。他们还将越来越多地使用计算机、人工智能以及专家系统来解决问题,进行产品和过程设计,生产制造。Two important development will be part of this unfolding picture of the discipline.Chemical engineers will become more heavily involved in product design as a complement toprocess design. As the properties of a product in performance become increasingly linked to theway in which it is processed, the traditional distinction between product and process design willbecome blurred. There will be a special design challenge in established and emerging industriesthat produceproprietary,differentiated products tailored toexactingperfomance specificationsThese products are characterized by the need for rapid innovatory ad they are quickly supersededinthe marketplace bynewer products.在这个学科中还有两个重要的发展是我们前面没有提到的:化学工程师将越来越多地涉及到对过程设计进行补充的产品设计中。因为产品所表现出来的性能将逐渐与它被加工的途径挂钩。传统概念上产品设计与过程设计之间的区别将变得模糊,不再那么明显。在已有的和新兴的工业中将出现一个特殊的设计竞争,那就是生产有专利权的、有特点的产品以适应严格的性能指标。这些产品的特征是服从快速革新的需要,因而他们将在市场上很快地被更新的产品所取代。Chemical engineers will be frequent participants in multidisciplinary research effortsChemical engineering has a long history of fruitful interdisciplinary research with the chemicalsciences, particularly industry.The position of chemical engineering as the engineering disciplinewith the strongest tie to the molecular sciences is an asset, since such sciences as chemistry,molecular biology, biomedicine, and solid-state physics are providing the seeds for tomorrow'stechnologies. Chemical engineering has a bright future as the “interfacial discipline", that willbridge science and engineering in the multidisciplinary environments where these newtechnologies will be brought into being.化学工程师将经常性地介入到多学科领域的研究工程。化学工程师参与跨学科研究与化学科学、特种工业进行合作具有悠久的历史。随着工程学与分子科学最紧密地联系在一起,化学工程学的地位也越来越崇高。因为如化学、分子生物学、生物医学以及固体物理这样的科学都是为明天的科学技术提供种子,作为“界面科学”,化学工程学具有光明的未来,它将在多学科领域中搭建科学和工程学之间的桥梁,而在这里将出现新的工业技术。4
4 未来的化学工程师将比任何其他分支的工程师在更为宽广的规模范围紧密协作。例如, 有些人可能从事于了解大范围的环境与中等规模的燃烧系统以及微型的分子水平的反应和 传递之间的关系。另一些人则从事了解合成的飞机的的性能与机翼所用化学反应器及反应器 的设计和对此有影响的复杂流体动力学的研究工作。 Thus, future chemical and engineers will conceive and rigorously solve problems on a continuum of scales ranging from microscale. They will bring new tools and insights to research and practice from other disciplines: molecular biology, chemistry, solid-state physics, materials science, and electrical engineering. And they will make increasing use of computers, artificial intelligence, and expert system in problem solving, in product and process design, and in manufacturing. 因此,未来的化学工程师们要准备好解决从微型的到巨型的规模范围内出现的问题。他 们要用来自其它学科的新的工具和理念来研究和实践:分子生物学,化学,固体物理学,材 料学和电子工程学。他们还将越来越多地使用计算机、人工智能以及专家系统来解决问题, 进行产品和过程设计,生产制造。 Two important development will be part of this unfolding picture of the discipline. Chemical engineers will become more heavily involved in product design as a complement to process design. As the properties of a product in performance become increasingly linked to the way in which it is processed, the traditional distinction between product and process design will become blurred. There will be a special design challenge in established and emerging industries that produce proprietary, differentiated products tailored to exacting performance specifications. These products are characterized by the need for rapid innovatory ad they are quickly superseded in the marketplace by newer products. 在这个学科中还有两个重要的发展是我们前面没有提到的: 化学工程师将越来越多地涉及到对过程设计进行补充的产品设计中。因为产品所表现出 来的性能将逐渐与它被加工的途径挂钩。传统概念上产品设计与过程设计之间的区别将变得 模糊,不再那么明显。在已有的和新兴的工业中将出现一个特殊的设计竞争,那就是生产有 专利权的、有特点的产品以适应严格的性能指标。这些产品的特征是服从快速革新的需要, 因而他们将在市场上很快地被更新的产品所取代。 Chemical engineers will be frequent participants in multidisciplinary research efforts. Chemical engineering has a long history of fruitful interdisciplinary research with the chemical sciences, particularly industry. The position of chemical engineering as the engineering discipline with the strongest tie to the molecular sciences is an asset, since such sciences as chemistry, molecular biology, biomedicine, and solid-state physics are providing the seeds for tomorrow’s technologies. Chemical engineering has a bright future as the “interfacial discipline”, that will bridge science and engineering in the multidisciplinary environments where these new technologies will be brought into being. 化学工程师将经常性地介入到多学科领域的研究工程。化学工程师参与跨学科研究与化 学科学、特种工业进行合作具有悠久的历史。随着工程学与分子科学最紧密地联系在一起, 化学工程学的地位也越来越崇高。因为如化学、分子生物学、生物医学以及固体物理这样的 科学都是为明天的科学技术提供种子,作为“界面科学”,化学工程学具有光明的未来,它将 在多学科领域中搭建科学和工程学之间的桥梁,而在这里将出现新的工业技术

单词短语capital-intensive资本密集的,资本集约的unitoperations单元操作artificial intelligence人工智能becharacterizedby具有...的特点【本讲课程的小结】1、课程内容讲解2、重点单词和短语讲解【本讲课程的作业】1、review2、pre-reading unit11 (1~2part),especialy new technical words and sub-technical words5
5 重点单词短语 capital-intensive 资本密集的,资本集约的 unit operations 单元操作 artificial intelligence 人工智能 be characterized by 具有.的特点 【本讲课程的小结】 1、 课程内容讲解 2、重点单词和短语讲解 【本讲课程的作业】 1、review 2、pre-reading unit11(1~2part),especialy new technical words and sub-technical words synthetic dystuff 2. In 1860 , the Industrial Revolution silica and sodium carbonate bleaching powder SiO2 NaCO3 glassmakin g bleaching powder 1 .In 1800 , the Industrial Revolution cotton Ca NaOH alkal soapmaking Gunpowder ClOi (火 药) Cmauve oatings(苯胺漆) 紫) 3. the start of the twentieth century (1914~1933) synthetic pharmaceutical (合成药物) 5. 1960~1970) 4. 1930~1940) 6. a very diverse Since 1980 sector of manufacturing industry plays a central role for our life and production polyethylene, 聚乙烯 PE polypropylene, 聚丙烯 PP nylon, 尼龙, 聚酰胺 polyesters 聚 酯 PET epoxy resins. 环氧树脂 synthetic polymers petrochemicals Development of inorganic chemicals ammonia
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《应用化学专业英语》课程授课教案(讲稿)Unit 10-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 5-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 5-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 4-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 4-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 3-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 3-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 2-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 2-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 1-2.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 1-1.doc
- 《化学工程与工艺专业英语》课程教学大纲 Chemical Engineering and Technology Specialized English.doc
- 《化工过程模拟》课程教学课件(讲稿)第十二讲 反应器单元的仿真设计(三).pdf
- 《化工过程模拟》课程教学课件(讲稿)第十一讲 反应器单元的仿真设计(二).pdf
- 《化工过程模拟》课程教学课件(讲稿)第十讲 反应器单元的仿真设计(一).pdf
- 《化工过程模拟》课程教学课件(讲稿)第九讲 分离单元的仿真设计(三).pdf
- 《化工过程模拟》课程教学课件(讲稿)第八讲 分离单元的仿真设计(二).pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 User GuideVol 3.pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 User GuideVol 2.pdf
- 《化工过程模拟》课程教学资源(文献资料)Aspen Plus 10 User GuideVol 1.pdf
- 《应用化学专业英语》课程授课教案(讲稿)Unit 11-1.doc
- 《应用化学专业英语》课程授课教案(讲稿)Unit 11-2.doc
- 《化工热力学》课程教学大纲 Chemical Engineering Thermodynamics.doc
- 《化工热力学》课程授课教案(讲稿)第三章 纯流体热力学性质的计算.pdf
- 《化工热力学》课程授课教案(讲稿)第七章 压缩、制冷和蒸汽动力循环.pdf
- 《化工热力学》课程授课教案(讲稿)第六章 化工过程的能量分析.pdf
- 《化工热力学》课程授课教案(讲稿)第二章 流体的PVT关系和状态方程.pdf
- 《化工热力学》课程作业习题(含答案)第三章 纯流体热力学性质的计算.pdf
- 《化工热力学》课程作业习题(含答案)第六章 化工过程的能量分析.pdf
- 《化工热力学》课程作业习题(含答案)第七章 压缩、膨胀、动力循环和制冷循环.pdf
- 《化工热力学》课程作业习题(含答案)第四章 溶液热力学基础.pdf
- 《化工热力学》课程作业习题(含答案)第二章 流体的PVT关系及状态方程.pdf
- 《化工热力学》课程教学资源(知识点)重点难点考点剖析.pdf
- 《化工热力学》课程教学资源(PPT课件)第六章 化工过程的能量分析.ppt
- 《化工热力学》课程教学资源(PPT课件)第四章 溶液热力学基础(溶液热力学性质的计算).ppt
- 《化工热力学》课程教学资源(PPT课件)第三章 纯流体热力学性质的计算.ppt
- 《化工热力学》课程教学资源(PPT课件)第七章 压缩、制冷与蒸汽动力循环.ppt
- 《化工热力学》课程教学资源(PPT课件)第二章 流体的PVT关系和状态方程.ppt
- 《化工原理》实验课程教学大纲 B.doc
- 《化工原理》课程设计教学大纲 Principle of Chemical Engineering.doc
