《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 4 Baseband Digital Transmission(Multidimensional Signals)

Baseband Digital Transmission Multidimensional Signals
Baseband Digital Transmission Multidimensional Signals

Multidimensional Vs.Multiamplitude Multiamplitude signal is One-dimensional 00 01 10 11 -3d -d 3d With One basis signal:g(t) Multidimensional signal Can be defined using multidimensional orthogonal signals
Multidimensional Vs. Multiamplitude ◼ Multiamplitude signal is One-dimensional ◼ With One basis signal: g(t) ◼ Multidimensional signal ◼ Can be defined using multidimensional orthogonal signals -3d -d d 3d 00 01 10 11

Multidimensional Orthogonal Signals Many ways to construct In this text,Construction of a set of M=2k waveforms s(t),i=1,2,.,M-1 Mutual Orthogonality ■ Equal Energy Using Mathematics ∫s,(0s0dh=56k,i,k=0,l,M-1 where Kronecker delta is 0,i≠k
Multidimensional Orthogonal Signals ◼ Many ways to construct ◼ In this text, Construction of a set of M=2k waveforms si (t), i=1,2,.,M-1 ◼ Mutual Orthogonality ◼ Equal Energy ◼ Using Mathematics ◼ where Kronecker delta is 0 ( ) ( ) , , 0,1,., 1 T i k ik s t s t dt i k M = = − 1, 0, ik i k i k = =

Example of M=22 Multiamplitude Vs.Multidimensional 3d S3 A1So S1 S2 S3 S2 -d S1 -3d 50 All signal has identical energy 3=0h-=01M- See figure 4.27,page 202,for signal constellation
Example of M=22 ◼ Multiamplitude Vs. Multidimensional ◼ All signal has identical energy ◼ ◼ See figure 4.27, page 202, for signal constellation s3 s2 s1 s0 T 3d d -d -3d s0 s1 s2 s3 T A 2 2 0 ( ) , , 0,1,., 1 T i A T s t dt i k M M = = = −

Receiver for AWGN Channe Received signal from AWGN channel ■r()=S,(t)+(t),m=0,l,M-l,0≤t≤T White Gaussian process With power spectrum No/2 Receiver decides which of M signal waveform was transmitted by observing r(t) Optimum receiver minimize Probability of Error
Receiver for AWGN Channel ◼ Received signal from AWGN channel ◼ ◼ Receiver decides which of M signal waveform was transmitted by observing r(t) ◼ Optimum receiver minimize Probability of Error ( ) ( ) ( ), 0,1,., 1, 0 i r t s t n t m M t T = + = − White Gaussian process With power spectrum N0 /2

Optimum Receiver for AWGN Channel Needs M Correlators (or Matched Filters) So(t) Samples at t=T r(t) [.dr SM-1(t) Detector Oytput Decision .od rM-1 5=∫0r0s,()d,i=0,l,M-1
Optimum Receiver for AWGN Channel ◼ Needs M Correlators (or Matched Filters) 0 ( ) ( ) , 0,1,., 1 T i i r r t s t dt i M = = − 0 ( ) t d r(t) s0(t) Samples at t=T 0 ( ) t d sM-1(t) Detector Output Decision r0 rM-1

Signal Correlators Let so(t)is transmitted (dt+[so(n()dt =+n ■5=∫rus,)dh=s,④+n0}s,0M -ss (di+s.(n()di=ni Orthogonal Noise component(Gaussian Process) Zero mean and Variance o-)
Signal Correlators ◼ Let s0 (t) is transmitted ◼ ◼ ◼ Noise component (Gaussian Process) ◼ Zero mean and Variance 0 0 0 0 0 0 2 0 0 0 0 0 ( ) ( ) { ( ) ( )} ( ) ( ) ( ) ( ) T T T T r r t s t dt s t n t s t dt s t dt s t n t dt n = = + = + = + 0 0 0 0 0 0 0 ( ) ( ) { ( ) ( )} ( ) ( ) ( ) ( ) ( ) , 0 T T i i T T i i i r r t s t dt s t n t s t dt s t s t dt s t n t dt n i = = + = + = Orthogonal 2 2 2 0 0 0 ( ) ( ) 2 2 T i i N N E n s t dt = = =

pdf of correlator output Let so(t)is transmitted P(rolso(t)) 5o(t) Samples at t=T 1 -e-y12a2 so(t)+n(t) 2πo SM-1(t) rM-1 Mean of correlator output P(rls(t)) ·Etl=3,E=0 1-e12o √2π0
pdf of correlator output ◼ Let s0 (t) is transmitted ◼ Mean of correlator output ◼ E[r0 ] = , E[ri ] = 0 0 ( ) t d s0(t)+n(t) s0(t) Samples at t=T 0 ( ) t d sM-1(t) r0 rM-1 2 2 0 0 0 ( ) / 2 ( | ( )) 1 2 r P r s t e − − = 2 2 0 / 2 ( | ( )) 1 2 i i r P r s t e − = 0

Optimum Detector Let so(t)is transmitted The probability of correct decision Is probability that ro>i ■P=P(G>5,6>2,6>rM-) The average probability of symbol error ■PM=1-P=1-P(%>5,%>3,6>M-1) =-0w圳。9 For M=2 case(Binary Orthogonal signal) 月=X臣3,=36n
Optimum Detector ◼ Let s0 (t) is transmitted ◼ The probability of correct decision ◼ Is probability that r0 > ri ◼ ◼ The average probability of symbol error ◼ ◼ For M=2 case (Binary Orthogonal signal) ◼ 0 1 0 2 0 1 ( , ,., ) P P r r r r r r c M = − 2 0 0 1 0 2 0 1 1 ( 2 / ) / 2 1 1 ( , ,., ) 1 {1 [1 ( )] } 2 M c M M y N P P P r r r r r r Q y e dy − − − − − = − = − = − − 2 0 ( ), b P Q for binary b N = =

More on Probability error Average probability of symbol error ■ Same even if s(t)is changed Numerically evaluation of integral Converting probability of symbol error to probability of a binary digit error 2- PM 2-1 Symbol error probability Bit error probability ■Figure4.29page206 ■AsM→64,we need small SNR to get a given probability of error
More on Probability error ◼ Average probability of symbol error ◼ Same even if si (t) is changed ◼ Numerically evaluation of integral ◼ Converting probability of symbol error to probability of a binary digit error ◼ ◼ Figure 4.29 page 206 ◼ As M→64, we need small SNR to get a given probability of error 1 2 2 1 k b M k P P − = − Symbol error probability Bit error probability
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 4 Baseband Digital Transmission(Multiamplitude Signal Transmission).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 4 Baseband Digital Transmission(Binary Signal Transmission).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 3 Analog-to-Digital Conversion(Pulse Amplitude Modulation、Pulse Code Modulation).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 3 Analog-to-Digital Conversion(Preview、Measure of Information、Quantization).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 2 Transmitters and Receivers.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 2 Analog Modulation(Frequency Modulation、Phase Modulation).ppt
- 《通信原理实验》课程电子教案(讲稿)MATLAB与通信仿真(英文)Chapter 7 Spread Spectrum Communication Systems.doc
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 2 Analog Modulation(SSB – AM).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 2 Analog Modulation(Conventional AM).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 2 Analog Modulation(AM,Amplitude Modulation).ppt
- 《通信原理实验》课程电子教案(讲稿)MATLAB与通信仿真(英文)Chapter 1 Basic Matlab.doc
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_第1章 matlab基础知识.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_第3章 图形处理与simulink仿真.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_第2章 matlab语言入门.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_matlab在通信中的应用(模拟调制系统).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_matlab在通信中的应用(模拟信号的数字传输).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_matlab在通信中的应用(二进制基带系统).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真电子教案_matlab在通信中的应用(PSK频带传输系统).doc
- 《通信原理实验》课程电子教案(PPT讲稿)FPGA通信系统设计——第四讲 DDS信号发生器周期信号的傅里叶级数拟合.ppt
- 《通信原理实验》课程电子教案(讲稿)FPGA通信系统设计——第四讲 方波信号展开为傅里叶级数.doc
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 5Digital Transmission Through Bandlimited Channels.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 6 Binary Modulated Bandpass Signaling(1/3).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 6 Binary Modulated Bandpass Signaling(2/3).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)MATLAB与通信仿真(英文)Chapter 6 Binary Modulated Bandpass Signaling(3/3).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第01讲 HDL语言概述.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第02讲 Verilog HDL语言基础.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第03讲 门级与结构建模.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第04讲 数据流建模.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第05讲 行为建模(1/2).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第06讲 行为建模(2/2).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第07讲 综合建模与仿真.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)Verilog HDL数字系统设计与综合实验——第08讲 可综合设计.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第1章 嵌入式系统概述.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第2章 嵌入式系统工程设计.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第3章 ARM7体系结构(1/2).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第3章 ARM7体系结构(2/2).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第4章 ARM7TDMI(-S)指令系统.ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第5章 LPC2000系列ARM(1/4).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第5章 LPC2000系列ARM(2/4).ppt
- 《通信原理实验》课程电子教案(PPT讲稿)嵌入式系统设计实验——第5章 LPC2000系列ARM(3/4).ppt