聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第五章 可数性公理 §5.1 第一与第二可数性公理

第五章可数性公理 §5.1第一与第二可数性公理 §5.2可分空间 §5.3 Lindeloff空间
§5.1第一与第二可数性公理 §5.2可分空间 §5.3 Lindelöff空间

§5.1 第一与第二可数性公理 可 数基拓扑空间的一个基 如果是一个可数族,则称这个基是 个可数基 可数邻域基拓扑空间在某一点处 的一个邻域基是一个可数族,则 称它是可数邻域基
§5.1 第一与第二可数性公理 可 数 基 可数邻域基 拓扑空间在某一点处 的一个邻域基是一个可数族,则 称它是可数邻域基. 拓扑空间的一个基, 如果是一个可数族,则称这个基是 一个可数基

定义5.1.1一个拓扑空间如 果有一个可数基,则称这个拓扑 空间是一个满足第二可数性公理 的空间,或简称为A2空间
定义5.1.1 一个拓扑空间如 果有一个可数基,则称这个拓扑 空间是一个满足第二可数性公理 的空间,或简称为A2空间.

定阻11实鞋满款第二可我拉公2 翻令留为所有越以有理黄方它的两个质甜开区间时成 藏跋,是-个可藏链

设U取中的-个开集对于每-个x长U,存在实数c,>川 使得纵x为中心以€,为半径的球形邻域 Bx,=(x-6,t十】 包含于U八.选取有理数4,利6,使得 xe,,〈x0,x+e

于是我们有a,点,)CU,于是=U知(a,b),这色就是说 U可以表标为中的菜丝元素之并这就证明了是的-个 基 ?有舸数基,所以加满足第可数性公是

定义5.1.2一个拓扑空间 如果在它的每一点处有一个可 数邻域基,则称这个拓扑空间 是一个满足第一可数性公理的 空间或简称为4空间
定义5.1.2 一个拓扑空间 如果在它的每一点处有一个可 数邻域基,则称这个拓扑空间 是一个满足第一可数性公理的 空间或简称为A1空间.

理12年-小量间-可度触2 T班设是-个废腔CL听郁清护以

不满足第一可数性公理的空间的例子 设X是包含着不可数多个点 的可数补空间,则X在它的任何一 点处都没有可数邻域基
不满足第一可数性公理的空间的例子 设X是包含着不可数多个点 的可数补空间,则X在它的任何一 点处都没有可数邻域基.

用反证法来证明这一点设X在点xEX处有-个可数邻域 基则对于在何y长X,≠红,于y是一个包含x的开集,所 以存在V,E使得y门V,因光yCV,将这个包含关系式 的两边分别对于X中所有的异于x的点y求并,可见 acUw
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.5 道路连通空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.4 局部连通空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.3 连通分支.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.2 连通性的某些简单应用.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.1连通空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第三章 子空间、积空间、商空间 §3.3 商空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第三章 子空间、积空间、商空间 §3.2(有限)积空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第三章 子空间、积空间、商空间 §3.1 子空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 2.6 基与于基.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 2.7 拓扑空问中的序到.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 §2.5 内部、边界.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 §2.4 导集、闭集、闭包.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 §2.3 邻域与邻域系.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 §2.2 拓扑空间与连续映射.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 §2.1 度量空间与连续映射.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第六节 集族及其运算.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第五节 映射.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第四节 等价关系.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第三节 关系.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第一节 集合的基本概念.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第五章 可数性公理 §5.2 可分空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第五章 可数性公理 §5.3 Lindelöff 空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.1 T0 ,T1,Hausdorff空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.2 正则,正规,T3 ,T4空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.3 Urysohn引理和Tietze扩张定理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.4 完全正则空间,Tychonoff空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.5 分离性公理与子空间,(有限)积空间和商空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.6 可度量化空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.1 紧致空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.2 紧致性与分离性公理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.3 n维欧氏空间Rn中的紧致子集.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.4 几种紧致性以及其间的关系.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.5 度量空间中的紧致性.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.6 局部紧致空间,仿紧性空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第八章 完备度量空间 第一节 度量空间的完备化.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第八章 完备度量空间 第二节 度量空间的完备性与紧致性,Baire 定理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第二节 集合的基本运算.ppt
- 电子科技大学:《线性代数与空间解析几何》课程教学资源(教学大纲).doc
- 电子科技大学:《数学建模》课程教学资源(教学大纲).doc
- 电子科技大学:《离散数学》课程教学资源(教学大纲).doc