聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.3 n维欧氏空间Rn中的紧致子集

§7.3n维欧氏空间Rn中的 紧致子集 定义7.3.1设(X,p)是一个度 量空间,AcX.如果存在实M0使 得P(x,y)<M对于所有x,y∈A成 立,则称A是X的一个有界子集;如 果X本身是一个有界子集,则称度 量空间X是一个有界度量空间
§7.3 n维欧氏空间Rn中的 紧致子集 定义7.3.1 设 是一个度 量空间, .如果存在实M>0使 得 对于所有 成 立,则称A是X的一个有界子集;如 果X本身是一个有界子集,则称度 量空间 X 是一个有界度量空间. ( , ) X A X ( , ) x y M x y A ,

定理7.3.1紧致度量空间 是有界的
定理7.3.1 紧致度量空间 是有界的

正踢以,0是-个紧疲量空间白影构康的集 装Bx,1K提的-个开盖,它有-个有膜子覆盖,设 为8,8",8队I.令 =Ki+2

好,在i1i,庆揭r情 长,1是 KM

引理7.3.2 单位闭区间[0,1]是一个紧致空间。 证朋设4是[0,1的-个开覆盖.令 P=xE[0,1]有-个有限子族覆盖[0,x] 它是0,1]的一个子集对于集合P,我们依次证明: (1)P≠0.因为显然0∈P; (2)P是-个开集 继续
继续

设x∈P.则4有一个有限子族,设为{A1,A2,…,An},覆盖 [0,x].当x=1时,易见P=[0,1],它是个开集.因此x是P 的-个内点.下设x0使得[x, t+E)CA,.于是[0,x+e)CU1A.这蕴通[0,x+e)P.由 于[0,x+e)是[0,1]中的一个包含x的开集,所以x是P的一个 内点.以上证明了集合P中的任何一个点都是P的内点,所以它 是一个开集

(3)P是一个闭ǎ集 设x∈P=[0,1】-P.根据集合P的定义可见,x,1]CP', 另外根据(1)可见,00使得(x-e,x]CA.假如(x~e,x]∩ P≠必,设x∈(x~e,x]∩P.则4有一个有限子族4覆盖[0, z],因此的有限子族4UA覆盖0,x],这与xP矛盾所 以(x-e,x]∩P=2,即(x-e,x]CP.从而(x-e,1]CP,因 此x是P的一个内点.这证明P是一个开集,即P是一个闭集

服据上述三条,P是0,1]中的-个既开又闭的控子集由 于0,1是-个连通空间,所以P=[0,1特别,1P.这也就是 说有-个有限子族覆0,1,以上证明了[0,1任有-个开 覆盖有有限子覆盖,故[0,1]是一个紧致空间

定理7.3.3设A是n维欧氏 空间Rn中的一个子集.则A是 一个紧致子集当且仅当A是一 个有界闭集
定理7.3.3 设A是n维欧氏 空间Rn中的一个子集.则A是 一个紧致子集当且仅当A是一 个有界闭集.

正明设p是加维欧氏空间取的通常度量。 如果AC是-个繁致子集,则根据定理73.1,它是有界 的由于g是-个uof空间,根程推论7,22,它是-个闭 集
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.2 紧致性与分离性公理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.1 紧致空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.6 可度量化空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.5 分离性公理与子空间,(有限)积空间和商空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.4 完全正则空间,Tychonoff空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.3 Urysohn引理和Tietze扩张定理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.2 正则,正规,T3 ,T4空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第六章 分离性公理 §6.1 T0 ,T1,Hausdorff空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第五章 可数性公理 §5.3 Lindelöff 空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第五章 可数性公理 §5.2 可分空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第五章 可数性公理 §5.1 第一与第二可数性公理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.5 道路连通空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.4 局部连通空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.3 连通分支.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.2 连通性的某些简单应用.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第四章 连通性 §4.1连通空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第三章 子空间、积空间、商空间 §3.3 商空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第三章 子空间、积空间、商空间 §3.2(有限)积空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第三章 子空间、积空间、商空间 §3.1 子空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第二章 度量空间与连续映射 2.6 基与于基.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.4 几种紧致性以及其间的关系.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.5 度量空间中的紧致性.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第七章 紧致性 §7.6 局部紧致空间,仿紧性空间.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第八章 完备度量空间 第一节 度量空间的完备化.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第八章 完备度量空间 第二节 度量空间的完备性与紧致性,Baire 定理.ppt
- 聊城大学:《拓扑学 Topology》课程教学资源(PPT课件讲稿)第一章 集合论初步 第二节 集合的基本运算.ppt
- 电子科技大学:《线性代数与空间解析几何》课程教学资源(教学大纲).doc
- 电子科技大学:《数学建模》课程教学资源(教学大纲).doc
- 电子科技大学:《离散数学》课程教学资源(教学大纲).doc
- 电子科技大学:《数学建模 Mathematical Modeling an Experiments》课程教学资源(教学大纲).pdf
- 电子科技大学:《数学建模 Mathematical Modeling an Experiments》课程教学资源(授课教案)哥尼斯堡七桥问题.pdf
- 电子科技大学:《数学建模 Mathematical Modeling an Experiments》课程教学资源(课件讲稿汇总,何国良).pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第一章 序言.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第二章 应用案例.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第三章 数学建模.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第五章 数学创新思维.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第四章 论文写作.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第六章 数学创新思维方法.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第七章 问题前期分析.pdf
- 电子科技大学:《漫画数学建模》课程教学资源(课件讲稿)第八章 数学模型建立.pdf