美国麻省理工大学:《动力工程学》(英文版)Lecture D34 Coupled Oscillators

Lecture D34 Coupled oscillators Spring-Mass System(Undamped/ Unforced) Wmi Mm2 orce on m1 1=-k11-k2(x1-x2) Force on m2 F2= k2(1-2) Newton's second Law 01 k11-k2(x1-x2) 02 2 k2(x1-x2)
Lecture D34 : Coupled Oscillators Spring-Mass System (Undamped/Unforced) Force on m1 : F1 = −k1x1 − k2(x1 − x2) Force on m2 : F2 = k2(x1 − x2) Newton’s Second Law m1 x¨ 1 = −k1x1 − k2(x1 − x2) m2x¨2 = k2(x1 − x2) 1

Solution Try solution of the form 1(t)=X1 sin(wt+o, 2(t=X2 sin(at+o) and see if we can find x1, X2, w and such that the equation is satisfied m010 k1-k2)X1+k2X2 k2X1+( 0,2 k2)X2 or 4) 2 where LA 2 2 2 2
� � � � � � Solution Try solution of the form: x1(t) = X1 sin(ωt+φ), x2(t) = X2 sin(ωt+φ) and see if we can find X1, X2, ω and φ such that the equation is satisfied (m1ω2 − k1 − k2)X1 + k2X2 = 0 k2X1 + (m2ω2 − k2)X2 = 0 or, X1 0 [A] = X2 0 where, m1ω2 − k1 − k2 k2 [A] = k2 m2ω2 − k2 2

Natural Frequencies For non-trivial solutions we need D(u)=de[4]=0 D(u):=m1m2u4-(m1k2+m2(k1+k2))u2+k1k2 We can solve for w2 m1k2+m2(k1+k2)士 2m1m2 Where, △=(m1k2+m2(k1+k2)2-4m1m2k1k2 We can show △<m1k2+m2(k1+k2) 士 are rea
Natural Frequencies For non-trivial solutions we need D(ω) = det[A] = 0 D(ω) := m1m2ω4 − (m1k2 + m2(k1 + k2))ω2 + k1k2 We can solve for ω2 , m1k2 + m2(k1 + k2) ± √Δ ω± 2 = 2m1m2 where, Δ = (m1k2 + m2(k1 + k2))2 − 4m1m2k1k2 We can show • Δ √ > 0 • Δ < m1k2 + m2(k1 + k2) . . . ω± are real 3

Normal modes X1 and x2 will satisfy (m1圣-k1-k2)X+k2X k2X1+(m2 kDxi the same equation!! 2 1 k1-k2 士6 k2 7sm1k+k2.6=1(2m22k2 m1 k1+k2 m21 2 m 2 2k2 X
� � � Normal Modes X1 and X2 will satisfy (m1ω2 ± − k1 − k2)X1 + k2X± = 0 ± 2 k2X1 + (m2ω2 ± − k2)X2 = 0 ± . . . the same equation!! X2 ± m1ω2 ± − k1 − k2 − = = γ ± δ X1 k2 � �2 m1 m1 k1 + k2 γ = 2m2 − k1 + k2 , δ = 2m2 − 2k2 + m1 k2 2k2 m2 4 2

Genera solution Unforced problem X1 sin(w-t+o+)+xl sin (w+t+o+) X2sin(u-t+φ+)+X2sin(u+t+φ+ Constants X,φ± to be determined as a function of initial conditions 10), x2 0) 1(0) and r2(0) Note that xo are determined once x are known
General Solution Unforced Problem 1 sin(ω−t + φ+) + X+ x1(t) = X− 1 sin(ω+t + φ+) 2 sin(ω−t + φ+) + X+ x2(t) = X− 2 sin(ω+t + φ+) Constants X± , φ to be determined as a 1 ± function of initial conditions x1(0), x2(0), x˙1(0) and ˙x2(0) Note that X± 2 1 are determined once X± are known 5

Forced oscillation Spring-Mass System (Undamped) Fosin wt ∧A F1=-k11-k2(x1-2)+F(t) 1 2 Newton's second Law 11 k1C1-k2(e1-22)t Fo sin wt 7722 k 2(1 2
Forced Oscillation Spring-Mass System (Undamped) F1 = −k1x1 − k2(x1 − x2) + F(t) F2 = k2(x1 − x2) Newton’s Second Law m1 x¨ 1 = −k1x1 − k2(x1 − x2) + F0 sin ωt m2x¨2 = k2(x1 − x2) 6

Solution x1(t)=xi(t)+x1(t),x2(t)=x2(t)+a2( af (t) and as(t) are solutions of the unforced problem and we already know We try a particular solution, i(t)and a2(t) of the form i(t)=xi sin wt, aP(t)=X, sin wt k1-k2)X1+k2 k2X1+(m2u2-k2)X=0 We can solve for Xi and x2 if D(w)+o
Solution p c p x1(t) = x1 c (t) + x1(t), x2(t) = x2(t) + x2(t) c x1(t) and x2 c (t) are solutions of the unforced problem and we already know We try a particular solution, p p x1(t) and x2(t) of the form p p 1 sin ωt, x2(t) = Xp x1(t) = Xp 2 sin ωt (m1ω2 − k1 − k2)Xp 1 + k2Xp 2 = F0 1 + (m2ω2 − k2)Xp k2X = 0 p 2 1 and X We can solve for p Xp 2 if D(ω) =6 0 7

Solution(cont'd) =(m202+k2)Fox02m2) 20 D Reca D(u)=m1m2(u2-u2)(u2-2) D(u)≠0 implies that w≠u士 Response for m1=m2,k1=k2 Xiv/E /k/
6 6 ± Solution (cont’d) Xp = (−m2ω2 + k2)F0, Xp = k2F0 1 D(ω) 2 D(ω) Recall −)(ω2 − ω D 2 (ω) = m1m2(ω2 − ω2 +) D(ω) = 0 implies that ω = ω Response for m1 = m2, k1 = k2 5 4 3 2 1 0 1 2 3 4 5 0 0.5 1 1.5 2 2.5 p p 8

COUPLED_OSCILLATORS This lecture serves a dual purpose: it introduces the concept of independent superimposed harmonic motions, and it allows consideration of simple vibration damping Simple Example With Two Coupled Oscillators Consider two masses sliding without friction on a horizontal surface, and connected by springs with no extemal forces applied. The points E1 and E2 are the equilibrium position of Mi and M2 k respectively, and displacements x1 and x2 are are measured to the right The force to the right on Fig M, in the given position is-kr-k(*, -x2), and the force on M2 is k2(x1-x2). Hence mx=一kx1一k(x-x2) (1) m2文2=k2(x1-x2) This pair of 2nd order, coupled, constant coefficient differential equations admits oscillatory solutions, which can be represented as x=Re(元e =Re(元 2e Here Re represents the real part of a complex quantity, and x,, i2 are complex numbers. The unknown frequency a is a real number for this problem, as will be proven, but in more complicated situations, it may also have an imaginary part. If the quantities 元,名 have amplitudes2 and phase angles, 元=e”;=F2 Then, from the definitions (3), Courtesy of Prof. Martinez-SancheZ. Used with permission
Courtesy of Prof. Martinez-Sanchez. Used with permission

x,=, cos(t+o, );x2=i2Icos(ar+2) and we could instead have assumed these sinusoidal functions for the solutions. However the exponential forms in(3)have definite advantages in terms of algebraic cleanliness Substituting (3)into(1)and(2), we obtain Re-m03+k元+k(元-划"}=0(6 R-m202+(一划}= Clearly, these conditions are satisfied of the two square brackets are zero (ma2-k-k2)+k元2=0 k+(mn202-k2)2=0 12_The_Natural_Frequencies An obvious solution is i=i2=0, but we are after a solution where something ens. The only other possibility is that( 8)and (9)are really the same equation, or, in erent words, that the two linear homogeneous equations (8 )and (9)be compatible. The first viewpoint would imply that the coefficients of x,, 2 are proportional in both equations k2 and the second viewpoint(compatibility) would amount to equating to zero the determinant of the coefficients, which, clearly, leads to the same eq(Eq. 10). In future, more involved problems, this second approach will be generally followed, because it is the more general of the Eq. (10) can be reduced to a 4th order Eq. in a, or, luckily in this case, a 2nd equation in @. The absence of terms in o and a can be traced back to the absence of damping terms, i. e, there is no force proportional to i, or i2. Cases with damping can also be handled by the same methods, and we will later see some examples. The equation this case is m,m,a-m, k2+m2(k+k)]o'+k, k The explicit solutions for @*are m+m1(+)士+m1(+人)-4mk m,m2 Courtesy of Prof. Martinez-Sanchez. Used with permission
Courtesy of Prof. Martinez-Sanchez. Used with permission
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D32: Damped Free Vibration.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D33: Forced Vibration.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D31: Linear Harmonic Oscillator.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D29-Central Force Motion: Orbits.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D28-Central Force Motion: Kepler's Laws.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D2Variable27- Mass Systems: The Rocket Equation.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D30-Orbit Transfers.pdf
- 美国麻省理工大学:《动力工程学》(英文版)D24-3D RIGID BODY DYNAMICS.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture DD23-3 Rigid Body Kinematics: The Inertia Tensor.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D21-Pendulums.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lectures D25-26: 3D Rigid Body Dynamics.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D22-3D Rigid Body Kinematics.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D18-2D Rigid Body Dynamics: Equations of Motion.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D20-2D Rigid Body Dynamics: Impulse and Momentum.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D17-Conservation Laws for Systems of Particles.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D19-2D Rigid Body Dynamics: Work and Energy.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D16-2D Rigid Body Kinematics.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D14-Accelerometers. Newtonian Relativity.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D13-Newton's Second Law for Non-Inertial Observers. Inertial Forces.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D15-Gravitational Attraction. The Earth as a Non-Inertial Reference Frame.pdf
- 麻省理工学院:《数值模拟导论》第一讲 问题实例及基本方程.pdf
- 麻省理工学院:《数值模拟导论》第四讲 线性稀疏矩阵的直接解法.pdf
- 麻省理工学院:《数值模拟导论》第三讲 求解线性系统的基本方法.pdf
- 麻省理工学院:《数值模拟导论》第二讲 方程的形成方法.pdf
- 麻省理工学院:《数值模拟导论》第七讲 Krylov子空间矩阵解法.pdf
- 麻省理工学院:《数值模拟导论》第五讲 QR分解.pdf
- 麻省理工学院:《数值模拟导论》第六讲 Krylov子空间矩阵求解方法.pdf
- 麻省理工学院:《数值模拟导论》第八讲 一维非线性求解方法.pdf
- 麻省理工学院:《数值模拟导论》第九讲 多维牛顿法.pdf
- 麻省理工学院:《数值模拟导论》第十讲 改进的牛顿法.pdf
- 麻省理工学院:《数值模拟导论》第十二讲 一般不等式求解法.pdf
- 麻省理工学院:《数值模拟导论》第十三讲 多步法收敛性.pdf
- 麻省理工学院:《数值模拟导论》第十五讲 计算周期性稳定态的方法.pdf
- 麻省理工学院:《数值模拟导论》第十一讲 牛顿法实例学习——模拟图像滤波器.pdf
- 麻省理工学院:《数值模拟导论》第十四讲 多步法Ⅱ.pdf
- 麻省理工学院:《数值模拟导论》第十七、十八讲 分子动态学.pdf
- 麻省理工学院:《数值模拟导论》第十六讲 计算周期性稳定态的方法2.pdf
- 麻省理工学院:《数值模拟导论》第十九讲 拉普拉斯方程一有限元法.pdf
- 麻省理工学院:《数值模拟导论》第二十讲 边界值问题的有限差分法.pdf
- 麻省理工学院:《数值模拟导论》第二十三讲 积分方程的快速算法.pdf