美国麻省理工大学:《动力工程学》(英文版)Lecture D31: Linear Harmonic Oscillator

Lecture d31. Linear harmonic oscillator Spring-Mass system k n Spring force F k>0 Newton's second Law m2+k:x=0 (Define) Natural frequency(and period) k 2丌 Equation of a linear harmonic oscillator +wnx=o
Lecture D31 : Linear Harmonic Oscillator Spring-Mass System Spring Force F = −kx, k > 0 Newton’s Second Law mx¨ + kx = 0 (Define) Natural frequency (and period) ωn = s k m τ = 2π ωn Equation of a linear harmonic oscillator x¨ + ω 2 nx = 0 1

Solution General solution c(t=A cos wnt+B sin wnt or xc(t)=Csin(unt+φ) Initial conditions x(0)=x0x(0)=io Solution w(t=o cos wnt+-sin wnt or 1r0 a(t)=va5+(co/wn)sin(wnt +tan( ))
Solution General solution x(t) = A cos ωnt + B sin ωnt or, x(t) = C sin(ωnt + φ) Initial conditions x(0) = x0 x˙(0) = ˙x0 Solution, x(t) = x0 cos ωnt + x˙0 ωn sin ωnt or, x(t) = q x 2 0 + ( ˙x0/ωn) 2 sin(ωnt + tan−1 ( x0ωn x˙0 )) 2

Graphical Representation 2丌 T B t Displacement, velocity and Acceleration 0 2丌
Graphical Representation Displacement, Velocity and Acceleration 3

Energy Conservation st Equilibrium Position No dissipation T+V= constant otential Energy k(a+sst) k 7709 At Equilibrium -kost f mg=0 V=-kr 2
Energy Conservation Equilibrium Position No dissipation T + V = constant Potential Energy V = 1 2 k(x + δst) 2 − 1 2 kδ2 st − mgx At Equilibrium −kδst + mg = 0, V = 1 2 kx2 4

Energy Conservation(cont'd) Kinetic Energy Conservation of energy (T+V)=mii+ kai=0 Governing equation mi+k= o Above represents a very general way of de- riving equations of motion (Lagrangian Me- chanics
Energy Conservation (cont’d) Kinetic Energy 1 2 mx˙ 2 Conservation of energy d dt (T + V ) = mx˙x¨ + kxx˙ = 0 Governing equation mx¨ + kx = 0 Above represents a very general way of deriving equations of motion (Lagrangian Mechanics) 5

Energy Conservation(cont'd) If v=o at the equilibrium position T=Tmo for V≡Vmar T=0 for -max mac vmaz
Energy Conservation (cont’d) If V = 0 at the equilibrium position, V = 0 T = Tmax for x = 0 V = Vmax T = 0 for x = xmax → Tmax = Vmax 6

EXamples o Spring-mass systems Rotating machinery Pendulums(small amplitude) Oscillating bodies(small amplitude) e Aircraft motion( Phugoid) Waves(String, Surface, Volume, etc.) ● Circuits
Examples • Spring-mass systems • Rotating machinery • Pendulums (small amplitude) • Oscillating bodies (small amplitude) • Aircraft motion (Phugoid) • Waves (String, Surface, Volume, etc.) • Circuits • . . . 7

The Phugoid Idealized situation Small perturbations(h/, v)about steady level flight (ho, vo) h=h+b0=v0+ L=W(mg) for v=v0, but L N v2 ≈(1+2-+..)
The Phugoid Idealized situation : • Small perturbations (h ′ , v′) about steady level flight (h0, v0) h = h0 + h ′ v = v0 + v ′ • L = W (≡ mg) for v = v0, but L ∼ v 2 , L mg = v 2 v 2 0 ≈ v 2 0 v 2 0 (1 + 2 v ′ v0 + . . .) 8

The Phugoid(cont'd) e Vertical momentum equation mh=L-mg g(1+ Energy conservation T= D mgh +muo=mgh+mu2 (to first order)- gh+uov=0 ● Equations of motion 2 +2当h 0 i+2
The Phugoid (cont’d) • Vertical momentum equation m¨h = L − mg ¨h = g(1 + 2 v ′ v0 − 1) • Energy conservation T = D mgh0 + 1 2 mv2 0 = mgh + 1 2 mv2 (to first order) → gh′ + v0v ′ = 0 • Equations of motion ¨h ′ + 2 g 2 v 2 0 h ′ = 0 ¨v ′ + 2 g 2 v 2 0 v ′ = 0 9

The Phugoid(cont'd) h' and v' satisfy a Harmonic Oscillator equa- tion Natural frequency and period V27 Light aircraft vo 1 soft/s T~20s Solution h= Asi 0 A sin U 10
The Phugoid (cont’d) h ′ and v ′ satisfy a Harmonic Oscillator Equation Natural frequency and Period ωn = √ 2g v0 τ = √ 2π v0 g Light aircraft v0 ∼ 150ft/s → τ ∼ 20s Solution h ′ = A sin √ 2g v0 t ! v ′ = − g v0 A sin √ 2g v0 t ! 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D29-Central Force Motion: Orbits.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D28-Central Force Motion: Kepler's Laws.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D2Variable27- Mass Systems: The Rocket Equation.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D30-Orbit Transfers.pdf
- 美国麻省理工大学:《动力工程学》(英文版)D24-3D RIGID BODY DYNAMICS.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture DD23-3 Rigid Body Kinematics: The Inertia Tensor.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D21-Pendulums.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lectures D25-26: 3D Rigid Body Dynamics.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D22-3D Rigid Body Kinematics.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D18-2D Rigid Body Dynamics: Equations of Motion.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D20-2D Rigid Body Dynamics: Impulse and Momentum.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D17-Conservation Laws for Systems of Particles.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D19-2D Rigid Body Dynamics: Work and Energy.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D16-2D Rigid Body Kinematics.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D14-Accelerometers. Newtonian Relativity.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D13-Newton's Second Law for Non-Inertial Observers. Inertial Forces.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D15-Gravitational Attraction. The Earth as a Non-Inertial Reference Frame.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D12- Relative Motion using Translating/Rotating Axes.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D11- Relative Motion using Translating Axes.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D7-Work and Energy.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D33: Forced Vibration.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D32: Damped Free Vibration.pdf
- 美国麻省理工大学:《动力工程学》(英文版)Lecture D34 Coupled Oscillators.pdf
- 麻省理工学院:《数值模拟导论》第一讲 问题实例及基本方程.pdf
- 麻省理工学院:《数值模拟导论》第四讲 线性稀疏矩阵的直接解法.pdf
- 麻省理工学院:《数值模拟导论》第三讲 求解线性系统的基本方法.pdf
- 麻省理工学院:《数值模拟导论》第二讲 方程的形成方法.pdf
- 麻省理工学院:《数值模拟导论》第七讲 Krylov子空间矩阵解法.pdf
- 麻省理工学院:《数值模拟导论》第五讲 QR分解.pdf
- 麻省理工学院:《数值模拟导论》第六讲 Krylov子空间矩阵求解方法.pdf
- 麻省理工学院:《数值模拟导论》第八讲 一维非线性求解方法.pdf
- 麻省理工学院:《数值模拟导论》第九讲 多维牛顿法.pdf
- 麻省理工学院:《数值模拟导论》第十讲 改进的牛顿法.pdf
- 麻省理工学院:《数值模拟导论》第十二讲 一般不等式求解法.pdf
- 麻省理工学院:《数值模拟导论》第十三讲 多步法收敛性.pdf
- 麻省理工学院:《数值模拟导论》第十五讲 计算周期性稳定态的方法.pdf
- 麻省理工学院:《数值模拟导论》第十一讲 牛顿法实例学习——模拟图像滤波器.pdf
- 麻省理工学院:《数值模拟导论》第十四讲 多步法Ⅱ.pdf
- 麻省理工学院:《数值模拟导论》第十七、十八讲 分子动态学.pdf
- 麻省理工学院:《数值模拟导论》第十六讲 计算周期性稳定态的方法2.pdf