《高等数学》课程教学课件(讲稿)3-3求导数四则运算法则

第三讲 导数的四则运算
第三讲 导数的四则运算

导数与微分 1.求导数的四则运算法则-加减法 设函数u(x),v(x)在x处可导,则: [u(x)+v(x)]'=u'(x)+v'(x) [u(x)-v(x)]'=u'(x)-v'(x) 例1:求下列函数的导数: (1)y=2x+x9 (2)y logz*+sinx (3)y=cosx+vx (4)y=Inx+3x
1.求导数的四则运算法则-加减法 设函数𝒖(𝒙), 𝒗(𝒙)在𝒙处可导,则: [𝒖 𝒙 + 𝒗 𝒙 ]′ =𝒖′ 𝒙 + 𝒗 ′ 𝒙 𝒖 𝒙 − 𝒗 𝒙 ′ = 𝒖 ′ 𝒙 − 𝒗 ′ 𝒙 例1:求下列函数的导数: (1)𝒚 = 𝟐 𝒙+𝒙 𝟗 (2)𝒚 = 𝒍𝒐𝒈𝟐 𝒙+𝒔𝒊𝒏𝒙 (3)𝒚 = 𝒄𝒐𝒔𝒙+ 𝒙 (4)𝒚 = 𝒍𝒏𝒙+𝟑 𝒙

导数与微分 解: (1)y=(2+x9)'=(2x)'+(x9) =2xLn2+9x9-1=2xLn2+9x8 2)y=(log:+sinx)= +cosx Vx=x2 1 (3)y'=(cosx+x)'=sinx+ 2v元 ④y=x+3y-+303
解: (1)𝒚′ = (𝟐 𝒙+𝒙 𝟗)′ = 𝟐 𝒙 ′ + 𝒙 𝟗 ′ (2)𝒚′ = (𝒍𝒐𝒈𝟐 𝒙+𝒔𝒊𝒏𝒙)′ (3)y ′ = (𝒄𝒐𝒔𝒙 + 𝒙)′ (4)𝒚′=(𝒍𝒏𝒙 + 𝟑 𝒙 )′ = 𝟐 𝒙 𝒍𝒏𝟐 + 𝟗𝒙 𝟗−𝟏 = 𝟐 𝒙 𝒍𝒏𝟐 + 𝟗𝒙 𝟖 = 𝟏 𝒙 𝒍𝒏𝟐 + 𝒄𝒐𝒔𝒙 = 𝟏 𝒙 + 𝟑 𝒙 𝒍𝒏𝟑 = −𝒔𝒊𝒏𝒙 + 𝟏 𝟐 𝒙 𝑥=𝑥 1 2

导数与微分 练习(1)y=5x+x13 (2)y=log4x-sinx (3)y=cosx+3元 (4)y=lnx+4
练习(1)𝒚=𝟓 𝒙+𝒙 𝟏𝟑 (2)𝒚=𝒍𝒐𝒈𝟒 𝒙 − 𝒔𝒊𝒏𝒙 (3)𝒚 = 𝒄𝒐𝒔𝒙+ 𝟑 𝒙 (4)𝒚 = 𝒍𝒏𝒙+𝟒 𝒙

导数与微分 2.求导数的四则运算法则-一乘法 [u(x)·v(x)]'=u'(x)v(x)+v'(x)u(x) [Cu(x)]'=Cu'(x) 证明:[C·u(x)]'=(C)'u(x)+u'(x)C =0×u(x)+u'(x)C =c u'(x)
𝒖 𝒙 ∙ 𝒗 𝒙 ′ = 𝒖 ′ 𝒙 𝒗 𝒙 + 𝒗 ′ 𝒙 𝒖(𝒙) [C 𝒖(𝒙)] ′ = 𝑪 𝒖 ′ 𝒙 2. 求导数的四则运算法则-乘法 证明: 𝐂 ∙ 𝒖 𝒙 ′ = (𝑪) ′𝒖 𝒙 + 𝒖 ′ 𝒙 𝑪 = 𝑪 𝒖 ′ 𝒙 = 𝟎 × 𝒖 𝒙 + 𝒖 ′ 𝒙 𝑪

导数与微分 例2:求下列函数的导数: (1)y=4·2x (2)y=6l0g2x (3)y=9Vx (4)y=5Inx (5)y=2 (6)y=n
例2:求下列函数的导数: (1)𝒚 = 𝟒 ∙ 𝟐 𝒙 (2)𝒚 = 𝟔𝒍𝒐𝒈𝟐 𝒙 (3)𝒚 = 𝟗 𝒙 (4)𝒚 = 𝟓𝒍𝒏𝒙 (5)𝒚 = 𝒆 𝒙 𝟐 (6)𝒚 = 𝒔𝒊𝒏𝒙 𝟒

导数与微分 例3:求下列函数的导数: (1)y=3·2x+5x9 y=3.2xlm2+45x8 (2)y=9cosx+x y=9(-sinx)+(x2)1 =9(-sinx)+2x号 (3)y 6l0g2x+7sinx (4)y=5lnx+3x
例3:求下列函数的导数: (1)𝒚 = 𝟑 ∙ 𝟐 𝒙+𝟓𝒙𝟗 (3)𝒚 = 𝟔𝒍𝒐𝒈𝟐 𝒙+𝟕𝒔𝒊𝒏𝒙 (2)𝒚 = 𝟗𝒄𝒐𝒔𝒙+ 𝒙 (4)𝒚 = 𝟓𝒍𝒏𝒙+𝟑 𝒙 y′ =3∙ 𝟐 𝒙 𝒍𝒏2+4𝟓𝒙 𝟖 𝐲′ = 𝟗(−𝒔𝒊𝒏𝒙) + (𝒙 𝟏 𝟐)′ = 𝟗(−𝒔𝒊𝒏𝒙) + 𝟏 𝟐 𝒙 − 𝟏 𝟐

导数与微分 例4:求下列函数的导数: (1)y=2x.x9 解:y=(2x.x9) =(2)'x9+2x(x9)1 =2rln2x9+9x8.2x 注:先把 (2)y =vxcosx 刻 解:y=(Vx)'c0sx+x(cosx)' cosx-stnx
例4:求下列函数的导数: (1)𝒚=𝟐 𝒙 ∙ 𝒙 𝟗 (2)𝒚 = 𝒙𝒄𝒐𝒔𝒙 解:𝒚′ = (𝟐 𝒙 ∙ 𝒙 𝟗 )′ = 𝟐 𝒙 𝒍𝒏𝟐𝒙 𝟗 + 𝟗𝒙 𝟖 ∙ 𝟐 𝒙 解:𝒚′ = ( 𝒙)′𝒄𝒐𝒔𝒙 + 𝒙(𝒄𝒐𝒔𝒙)′ = 𝟏 𝟐 𝒙 𝒄𝒐𝒔𝒙 − 𝒙𝒔𝒊𝒏𝒙 = (𝟐 𝒙 )′𝒙 𝟗 + 𝟐 𝒙 (𝒙 𝟗 )′ 注:先 把 法 则 写 对

导数与微分 练习:求下列函数的导数: (1)y=log2x·sinx (2)y=3xInx (3)y=lnx·c0sx
(1)𝒚 = 𝒍𝒐𝒈𝟐 𝒙 ∙ 𝐬𝐢𝒏𝒙 练习:求下列函数的导数: (2)𝒚 = 𝟑 𝒙 𝒍𝒏𝒙 (3) 𝒚 = 𝒍𝒏𝒙 ∙ 𝒄𝒐𝒔𝒙

导数与微分 解:y=(log2x.sinx) (log?)'sinx+(sinx)'log? 1 -xInzsinx+cosx.log 解:y=(3xlnx)/ =(3x)'Inx+(Inx)'3x 1 =3*n3nx+3
= 𝟏 𝒙𝒍𝒏𝟐 𝒔𝒊𝒏𝒙 + 𝒄𝒐𝒔𝒙 ∙ 𝒍𝒐𝒈𝟐 𝒙 = 𝒍𝒐𝒈𝟐 𝒙 ′𝒔𝒊𝒏𝒙 + (𝒔𝒊𝒏𝒙)′𝒍𝒐𝒈𝟐 𝒙 解:𝒚′ = (𝒍𝒐𝒈𝟐 𝒙 ∙ 𝐬𝒊𝒏𝒙)′ 解:𝒚′ = (𝟑 𝒙 𝒍𝒏𝒙)′ = (𝟑 𝒙 )′𝒍𝒏𝒙 + 𝒍𝒏𝒙 ′𝟑 𝒙 = 𝟑 𝒙 𝒍n𝟑𝒍𝒏𝒙 + 𝟏 𝒙 𝟑 𝒙
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学课件(讲稿)3-2导数的几何意义.pdf
- 《高等数学》课程教学课件(讲稿)3-1导数概念.pdf
- 《高等数学》课程教学课件(PPT讲稿)2-7-3初等函数的连续性.pptx
- 《高等数学》课程教学课件(讲稿)2-7-2函数的间断点.pdf
- 《高等数学》课程教学课件(讲稿)2-7-2函数的连续性.pdf
- 《高等数学》课程教学课件(讲稿)2-7-1函数的连续性.pdf
- 《高等数学》课程教学课件(讲稿)2-6-3无穷小的比较.pdf
- 《高等数学》课程教学课件(讲稿)2-6-2两个重要的极限.pdf
- 《高等数学》课程教学课件(讲稿)2-6-1两个重要的极限.pdf
- 《高等数学》课程教学课件(讲稿)2-5函数极限的四则运算.pdf
- 《高等数学》课程教学课件(讲稿)2-5-2函数极限的四则运算.pdf
- 《高等数学》课程教学课件(讲稿)2-5-1函数极限的四则运算.pdf
- 《高等数学》课程教学课件(讲稿)2-4-2无穷大量.pdf
- 《高等数学》课程教学课件(讲稿)2-4-1无穷小量.pdf
- 《高等数学》课程教学课件(讲稿)2-2-2函数极限(x趋近于x_0).pdf
- 《高等数学》课程教学课件(讲稿)2-2-1函数极限(x趋近于无穷大).pdf
- 《高等数学》课程教学课件(讲稿)2-1数列的极限.pdf
- 《高等数学》课程教学课件(讲稿)5-1-4反余切函数.pdf
- 《高等数学》课程教学课件(讲稿)5-1-3反正切函数.pdf
- 《高等数学》课程教学课件(讲稿)5-1-2反余弦函数.pdf
- 《高等数学》课程教学课件(讲稿)3-5复合函数求导法则.pdf
- 《高等数学》课程教学课件(讲稿)3-6隐函数求导法则.pdf
- 《高等数学》课程教学课件(讲稿)3-7对数求导法则与参数方程求导法则.pdf
- 《高等数学》课程教学课件(讲稿)3-8高阶导数.pdf
- 《高等数学》课程教学课件(讲稿)3-9-1函数的微分.pdf
- 《高等数学》课程教学课件(讲稿)3-9-3微分在近似计算中的应用.pdf
- 《高等数学》课程教学课件(讲稿)4-1微分中值定理.pdf
- 《高等数学》课程教学课件(讲稿)4-2函数的单调性.pdf
- 《高等数学》课程教学课件(讲稿)4-3函数的极值.pdf
- 《高等数学》课程教学课件(讲稿)4-4函数的最值.pdf
- 《高等数学》课程教学课件(讲稿)4-5曲线的凹凸性与拐点.pdf
- 《高等数学》课程教学课件(讲稿)4-6-1洛必达法则(3+2).pdf
- 《高等数学》课程教学课件(讲稿)4-7曲线的渐进线.pdf
- 《高等数学》课程教学课件(讲稿)5-1不定积分概念.pdf
- 《高等数学》课程教学课件(讲稿)5-2直接积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-3-1换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-3-2换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-3-3换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-4-1换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-4-2换元积分法.pdf