《高等数学》课程教学课件(讲稿)3-8高阶导数

导数与微分 复习: 基本初等函数的导数公式 (C)'=0 (x)'=1 (x)Y'=x-1 (' =1 2vx (ax)' =axlna (e)' =ex (logax)' 、1 xlna (lnx)'=1 (sinx)' (arcsinx)' (cosx)'=-sinx =1-x -1 (tanx)' =sec2x (arccosx)' V1-x2 (cotx)'=-csc2x (arctanx)' -1 (secx)' 1+x2 =secxtanx -1 (cscx)'=-cscxcotx (arccotx)' = 1+x2
复习: 基本初等函数的导数公式 𝐶 ′ = 0 (𝑥 𝜇 )’=𝜇𝑥 𝜇−1 (𝑎 𝑥 )’=𝑎 𝑥 𝑙𝑛𝑎 (𝑙𝑜𝑔𝑎𝑥)’= 1 𝑥𝑙𝑛𝑎 (𝑠𝑖𝑛𝑥)’=𝑐𝑜𝑠𝑥 (𝑐𝑜𝑠𝑥)′ = −𝑠𝑖𝑛𝑥 (𝑡𝑎𝑛𝑥)’=𝑠𝑒𝑐2𝑥 (𝑐𝑜𝑡𝑥)′ = −𝑐𝑠𝑐 2𝑥 (𝑠𝑒𝑐𝑥)’=𝑠𝑒𝑐𝑥tan𝑥 (𝑐𝑠𝑐𝑥)′ = −𝑐𝑠𝑐𝑥𝑐𝑜𝑡𝑥 𝑥 ′ = 1 ( 𝑥)’= 1 2 𝑥 (𝑒 𝑥 )’=𝑒 𝑥 (𝑙𝑛𝑥)’=1 𝑥 (𝑎𝑟𝑐𝑠𝑖𝑛𝑥)’= 1 1−𝑥 2 (𝑎𝑟𝑐𝑐𝑜𝑠𝑥)’= −1 1−𝑥 2 (𝑎𝑟𝑐𝑡𝑎𝑛𝑥)’= 1 1+𝑥 2 (𝑎𝑟𝑐𝑐𝑜𝑡𝑥)’= −1 1+𝑥 2

第八讲 高阶导数
第八讲 高 阶 导 数

导数与微分 一高阶导数 1、我们再来认识一个概念—一 高阶导数的概念 (sinx)'=cosx (cosx)'=-sinx 是sinx连续求两次导数的结果,称为函数sinx的二阶导数。 (sinx)"=((sinx)')=(cosx)'=-sinx 一般来说,如果函数f(x)的导函数f'(x)仍然可导 则称f'(x)的导数为原来函数f(x)的二阶导数。 记为f"(x)=(f'(x)
1、我们再来认识一个概念—— 高阶导数的概念 𝒔𝒊𝒏𝒙 ′ = 𝒄𝒐𝒔𝒙 (𝒄𝒐𝒔𝒙)′ = −𝒔𝒊𝒏𝒙 是𝒔𝒊𝒏𝒙连续求两次导数的结果, 称为函数𝒔𝒊𝒏𝒙的二阶导数。 𝒔𝒊𝒏𝒙 ′′ = 𝒔𝒊𝒏𝒙 ′ ′ = (𝒄𝒐𝒔𝒙)′ = −𝒔𝒊𝒏𝒙 一般来说,如果函数𝒇(𝒙)的导函数𝒇′(𝒙)仍然可导 则称𝒇 ′ 𝒙 的导数为原来函数𝒇 𝒙 的二阶导数。 记为𝒇 ′′ 𝒙 = (𝒇 ′ 𝒙 )′ 。 一.高阶导数

导数与微分 推而广之 设f(x)的n一1阶导数存在,它任然是x的函数,若它仍然可 导,则称它的导数为原来函数的阶导数。 n阶导数的记号为 f"(x),y”,f"(x),ym, d2f(x) d2y dx2 dx2 =品 f(4)(x),y(4),f((x),yn), dnf(x) dny dxn dxn ym=0-,器-品 定义把n(n≥2)阶导数称为高阶导数
推而广之 设𝒇(𝒙)的𝒏 − 𝟏阶导数存在,它任然是𝒙的函数,若它仍然可 导,则称它的导数为原来函数的𝒏阶导数。 𝒏阶导数的记号为 ,𝒇 (𝒏) (𝒙) ,𝒚 (𝒏) , 𝒅 𝒏𝒇(𝒙) 𝒅𝒙 𝒏 , 𝒅 𝒏𝒚 𝒅𝒙 𝒏 𝒚 (𝒏) = 𝒚 𝒏−𝟏 ′ , 𝒅 𝒏𝒚 𝒅𝒙 𝒏 = 𝒅 𝒅𝒙 ( 𝒅 𝒏−𝟏𝒚 𝒅𝒙 𝒏−𝟏 ) 𝒇 (𝟒) (𝒙) ,𝒚 (𝟒) ,𝒇 ′′′ 𝒇 𝒙 , 𝒚′′′ ′′ 𝒙 ,𝒚′′ , 𝒅 𝟐𝒇(𝒙) 𝒅𝒙 𝟐 , 𝒅 𝟐𝒚 𝒅𝒙 𝟐 = 𝒅 𝒅𝒙 ( 𝒅𝒚 𝒅𝒙) 定义 把𝒏 𝒏 ≥ 𝟐 阶导数称为高阶导数

导数与微分 例1.求y=x+3x2-V3的n阶导数: 解:y'=(x6+3x2-V3)'=6x5+6x y"=(6x5+6x)=6×5x4+6 y"=(6×5x4)=6×5×4x3 y(4=6×5×4×3x2 y(5)=6×5×4×3×2x y(6)=6×5×4×3×2=6! y(⑦)=0 . y(m=0 (n>6)
例1. 求 𝒚 = 𝒙 𝟔 + 𝟑𝒙 𝟐 − 𝟑的𝒏阶导数; 解: 𝒚′ = (𝒙 𝟔+𝟑𝒙 𝟐 − 𝟑)′ = 𝟔𝒙 𝟓 + 𝟔𝒙 𝒚′′ = (𝟔𝒙 𝟓+𝟔𝒙)′ = 𝟔 × 𝟓𝒙 𝟒 + 𝟔 𝒚′′′ = (𝟔 × 𝟓𝒙 𝟒 )’=𝟔 × 𝟓 × 𝟒𝒙 𝟑 𝒚 (𝟒)=𝟔 × 𝟓 × 𝟒 × 𝟑𝒙𝟐 𝒚 (𝟓)=𝟔 × 𝟓 × 𝟒 × 𝟑 × 𝟐𝒙 𝒚 (𝟔) = 𝟔 × 𝟓 × 𝟒 × 𝟑 × 𝟐 = 𝟔! 𝒚 (𝟕) = 𝟎 𝒚 (𝒏) = 𝟎 (𝒏 > 𝟔)

导数与微分 练习:求y=xn的n阶导数; A:y(n)=n! B:y(n+1)=n! C:y+)=(n+1)! D:y"=4!
练习:求 𝒚 = 𝒙 𝒏的𝒏阶导数; A:y (𝒏) = 𝒏! C:y (𝒏+𝟏) = (𝒏 + 𝟏)! B:y (𝒏+𝟏) = 𝒏! D:y ′′′′ = 𝟒!

导数与微分 例2.求y=ex的n阶导数; 解:y=(ex)'=ex y"=(e)'=ex y(n)ex
例2. 求 𝒚 = 𝒆 𝒙的𝒏阶导数; 𝒚′ = (𝒆 𝒙 )′ = 𝒆 𝒙 𝒚′′ = (𝒆 𝒙 )′ = 𝒆 𝒙 . 𝒚 (𝒏) = 𝒆 𝒙 解:

导数与微分 例3.求y=2x的n阶导数; 解:y=(2x)'=2xln2 y"=(2xln2)'=2x(ln2)2 y"=[2x(ln2)2]'=2*(ln2)3 ym=[2x(ln2)n-1]'=2xQn2)
例3. 求 𝐲 = 𝟐 𝒙的𝒏阶导数; 𝒚′ = (𝟐 𝒙 )′ = 𝟐 𝒙 𝒍𝒏𝟐 𝒚′′ = (𝟐 𝒙 𝒍𝒏𝟐)′ = 𝟐 𝒙 (𝒍𝒏𝟐) 𝟐 𝒚 ′′′ = [𝟐 𝒙 (𝒍𝒏𝟐) 𝟐 ]′=𝟐 𝒙 (𝒍𝒏𝟐) 𝟑 . 𝒚 (𝐧) = [𝟐 𝒙 𝒍𝒏𝟐) 𝒏−𝟏 ′ = 𝟐 𝒙 (ln𝟐) 𝒏 解:

导数与微分 练习:求y=3x的n阶导数: A:y(n)=(3xIn3)n B:ym=3x(ln3)” C:ym)=(3x)nLn3 D:y3)=3x(ln3)3
练习:求 𝒚 = 𝟑 𝒙的𝒏阶导数; A:y (𝒏) = (𝟑 𝒙 𝒍𝒏𝟑) 𝒏 C:y (𝒏) = (𝟑 𝒙 ) 𝒏 𝒍𝒏𝟑 B:y (𝒏) = 𝟑 𝒙 (𝒍𝒏𝟑) 𝒏 D:y (𝟑) = 𝟑 𝒙 (𝒍𝒏𝟑) 𝟑

导数与微分 例4.求y=sinx的n阶导数; 解:y=(stnx)'=cosx=sin(+x) y"=(cosx)=-sinx sin( y=(-sinx)'=-cosx=sin(+ y④=(-cosx)y=simx=sin(经+x) nπ 以四为周期循环 yom)=sin(2+) y(25)=y(4x6+1)=y=cosx sin() 2019m+xX) y2019)=y4x504+3)=y”=-c0sx=sin(2
例4. 求 𝐲 = 𝒔𝒊𝒏𝒙的𝒏阶导数; 𝒚′ = (𝒔𝒊𝒏𝒙)′ = 𝒄𝒐𝒔𝒙 𝒚 ′ ′ = (𝒄𝒐𝒔𝒙)′ = −𝒔𝒊𝒏𝒙 𝒚 ′ ′′ = (−𝒔𝒊𝒏𝒙)′ = −𝒄𝒐𝒔𝒙 𝒚 (𝟒) = (−𝒄𝒐𝒔𝒙)′ = 𝒔𝒊𝒏𝒙 以四为周期循环 𝒚 (𝟐𝟓) = 𝒚 (𝟒×𝟔+𝟏) = 𝒚 ′ = 𝒄𝒐𝒔𝒙 𝒚 (𝟐𝟎𝟏𝟗) = 𝒚 (𝟒×𝟓𝟎𝟒+𝟑) = 𝒚 ′′′ = −𝒄𝒐𝒔𝒙 解: = 𝒔𝒊𝒏( 𝝅 𝟐 + 𝒙) = 𝒔𝒊𝒏( 𝟐𝝅 𝟐 + 𝒙) = 𝒔𝒊𝒏( 𝟑𝝅 𝟐 + 𝒙) = 𝒔𝒊𝒏( 𝟒𝝅 𝟐 + 𝒙) = 𝒔𝒊𝒏( 𝟐𝟓𝝅 𝟐 + 𝒙) = 𝒔𝒊𝒏( 𝟐𝟎𝟏𝟗𝝅 𝟐 + 𝒙) 𝒚 (𝒏) = 𝒔𝒊𝒏( 𝒏𝝅 𝟐 + 𝒙)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学课件(讲稿)3-7对数求导法则与参数方程求导法则.pdf
- 《高等数学》课程教学课件(讲稿)3-6隐函数求导法则.pdf
- 《高等数学》课程教学课件(讲稿)3-5复合函数求导法则.pdf
- 《高等数学》课程教学课件(讲稿)3-3求导数四则运算法则.pdf
- 《高等数学》课程教学课件(讲稿)3-2导数的几何意义.pdf
- 《高等数学》课程教学课件(讲稿)3-1导数概念.pdf
- 《高等数学》课程教学课件(PPT讲稿)2-7-3初等函数的连续性.pptx
- 《高等数学》课程教学课件(讲稿)2-7-2函数的间断点.pdf
- 《高等数学》课程教学课件(讲稿)2-7-2函数的连续性.pdf
- 《高等数学》课程教学课件(讲稿)2-7-1函数的连续性.pdf
- 《高等数学》课程教学课件(讲稿)2-6-3无穷小的比较.pdf
- 《高等数学》课程教学课件(讲稿)2-6-2两个重要的极限.pdf
- 《高等数学》课程教学课件(讲稿)2-6-1两个重要的极限.pdf
- 《高等数学》课程教学课件(讲稿)2-5函数极限的四则运算.pdf
- 《高等数学》课程教学课件(讲稿)2-5-2函数极限的四则运算.pdf
- 《高等数学》课程教学课件(讲稿)2-5-1函数极限的四则运算.pdf
- 《高等数学》课程教学课件(讲稿)2-4-2无穷大量.pdf
- 《高等数学》课程教学课件(讲稿)2-4-1无穷小量.pdf
- 《高等数学》课程教学课件(讲稿)2-2-2函数极限(x趋近于x_0).pdf
- 《高等数学》课程教学课件(讲稿)2-2-1函数极限(x趋近于无穷大).pdf
- 《高等数学》课程教学课件(讲稿)3-9-1函数的微分.pdf
- 《高等数学》课程教学课件(讲稿)3-9-3微分在近似计算中的应用.pdf
- 《高等数学》课程教学课件(讲稿)4-1微分中值定理.pdf
- 《高等数学》课程教学课件(讲稿)4-2函数的单调性.pdf
- 《高等数学》课程教学课件(讲稿)4-3函数的极值.pdf
- 《高等数学》课程教学课件(讲稿)4-4函数的最值.pdf
- 《高等数学》课程教学课件(讲稿)4-5曲线的凹凸性与拐点.pdf
- 《高等数学》课程教学课件(讲稿)4-6-1洛必达法则(3+2).pdf
- 《高等数学》课程教学课件(讲稿)4-7曲线的渐进线.pdf
- 《高等数学》课程教学课件(讲稿)5-1不定积分概念.pdf
- 《高等数学》课程教学课件(讲稿)5-2直接积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-3-1换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-3-2换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-3-3换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-4-1换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-4-2换元积分法.pdf
- 《高等数学》课程教学课件(讲稿)5-5分部积分法.pdf
- 《高等数学》课程教学课件(讲稿)6-1定积分概念.pdf
- 《高等数学》课程教学课件(讲稿)6-2定积分的性质.pdf
- 《高等数学》课程教学课件(讲稿)6-3微积分基本公式.pdf