中国高校课件下载中心 》 教学资源 》 大学文库

《高等数学》课程教学课件(讲稿)5-3-2换元积分法

文档信息
资源类别:文库
文档格式:PDF
文档页数:15
文件大小:879.66KB
团购合买:点击进入团购
内容简介
《高等数学》课程教学课件(讲稿)5-3-2换元积分法
刷新页面文档预览

第三讲 换元积分法

第三讲 换元积分法

不定积分 一基本积分公式 (8) sinxdx =-cosx +c (1) kdx=kx+c (9) cosxdx sinx +c xu+1 (2) xudx +c(u≠-1) u+1 (10) sec2xdx tanx +c (3) dx =Inx+c (11) csc2xdx =-cotx +c (4) exdx =ex+c (12) secxtanxdx secx +c ax (5) axdx= +c(a>0,a≠1) (13) cscxcotxdx =-cscx +c 1 (6) 1 x2 dx=-+c dx arcsinx +c X (14) V1-x2 1元 dx =2vx+c 15) 1 1+x2 dx arctanx +c

(2) න 𝑥 𝑢𝑑𝑥 = 𝑥 𝑢+1 𝑢 + 1 + 𝑐 (𝑢 ≠ −1) (1) න 𝑘𝑑𝑥 = 𝑘𝑥 + 𝑐 (3) න 1 𝑥 𝑑𝑥 = 𝑙𝑛 |𝑥| + 𝑐 (4) න 𝑒 𝑥𝑑𝑥 = 𝑒 𝑥 + 𝑐 (5) න 𝑎 𝑥𝑑𝑥 = 𝑎 𝑥 𝑙𝑛𝑎 + 𝑐 (𝑎 > 0, 𝑎 ≠ 1) (6) න 1 𝑥 2 𝑑𝑥 = − 1 𝑥 + 𝑐 (9) න 𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑠𝑖𝑛𝑥 + 𝑐 (8) න 𝑠𝑖𝑛𝑥𝑑𝑥 = −𝑐𝑜𝑠𝑥 + 𝑐 (10) න 𝑠𝑒𝑐2𝑥𝑑𝑥 = 𝑡𝑎𝑛𝑥 + 𝑐 (11) න 𝑐𝑠𝑐 2𝑥𝑑𝑥 = −𝑐𝑜𝑡𝑥 + 𝑐 (12) න 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥𝑑𝑥 = sec𝑥 + 𝑐 (13) න 𝑐𝑠𝑐𝑥𝑐𝑜𝑡𝑥𝑑𝑥 = −𝑐𝑠𝑐𝑥 + 𝑐 (14) න 1 1 − 𝑥 2 𝑑𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑐 (15) න 1 1 + 𝑥 2 𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 + 𝑐 (7) න 1 𝑥 𝑑𝑥 = 2 𝑥 + 𝑐 一.基本积分公式

不定积分 练习 )/=+c t> 7+C 2四jrx=-i+c-号 7+C (3)∫2*=篇+c (④)∫e3xdr=e3x+C (5)∫cos5xdx=号sin5x+C

�� ׬ (1( 𝟔𝒅𝒙 �� ׬ (2( −𝟖𝒅𝒙 �� ׬ (3( 𝒙𝒅𝒙 = 𝒙 𝟔+𝟏 𝟔+𝟏 + 𝑪 = 𝒙 𝟕 𝟕 + 𝑪 = 𝒙 −𝟖+𝟏 −𝟖+𝟏 + 𝑪 = 𝒙 −𝟕 −𝟕 + 𝑪 = 𝟐 𝒙 𝒍𝒏𝟐 + 𝑪 �� ׬ (4( 𝟑𝒙𝒅𝒙 练习 �𝒅𝒙𝟓𝒔𝒐𝒄� ׬ (5( = 𝟏 𝟑 𝒆 𝟑𝒙 + 𝑪 = 𝟏 𝟓 𝒔𝒊𝒏𝟓𝒙 + 𝑪

不定积分 二、微分公式 例1.求下列函数的微分: 1 d(ex)exdx d(nx)-dx 1 d(cosx)=sinxdx d(2x)= 1 d(sinx)cosxdx d(-1)=zdx

例1.求下列函数的微分: 𝒅( ) = 𝒆 𝒙𝒅𝒙 𝒅( ) = 𝒔𝒊𝒏𝒙𝒅𝒙 𝒅( ) = 𝒄𝒐𝒔𝒙𝒅𝒙 𝒅( ) = 𝟏 𝒙 𝒅𝒙 𝒔𝒊𝒏𝒙 𝒍𝒏𝒙 𝒆 𝒙 −𝒄𝒐𝒔𝒙 𝒅( ) = 𝟏 𝒙 𝟐 𝒙 𝒅𝒙 𝒅( ) = 𝟏 𝒙 𝟐 − 𝒅𝒙 𝟏 𝒙 二、.微分公式

不定积分 例2:求下列不定积分。 (1)∫e*cos exdx 2∫gdr 解:=∫cos ex.erdx 解:=∫lnx·dx =∫cos exdex =∫Inx dlnx =∫cos udu u=ex =∫udu u Inx sinex +C

例2:求下列不定积分。 �� ׬ (1( 𝒙 𝐜𝐨𝐬 𝒆 ׬ (2𝒙𝒅𝒙 ( 𝒍𝒏𝒙 𝒙 𝒅𝒙 �� �𝐨𝐜� ׬ = :解 𝒙 ∙ 𝒆 𝒙 𝒅𝒙 �� �𝐨𝐜� ׬ = 𝒙𝒅𝒆 𝒙 �� �𝒅𝒖� �𝐨𝐜� ׬ = �� = �� = 𝒔𝒊𝒏𝒆 𝒙 + 𝑪 ∙ �𝒏𝒍� ׬ = :解 𝟏 𝒙 𝒅𝒙 �𝒏𝒍𝒅� �𝒏𝒍� ׬ = �𝒏𝒍� = �� �𝒅𝒖� ׬= = (𝒍𝒏𝒙) 𝟐 𝟐 + 𝑪

不定积分 练习 (1)∫exsin exdx =-cosex+C -+c 3 ax 4∫ dx arcsinex C

�� ׬ (1( 𝒙𝒔𝒊𝒏𝒆 ׬ (2𝒙𝒅𝒙 ( (𝒍𝒏𝒙) 𝟐 𝒙 𝒅𝒙 练习 = −𝒄𝒐𝒔𝒆 𝒙 + 𝑪 = (𝒍𝒏𝒙) 𝟑 𝟑 + 𝑪 ׬ (3( 𝒆 𝒙 𝟏−𝒆 𝟐𝒙 ׬ (4𝒅𝒙 ( (𝒍𝒏𝒙) 𝟑 𝒙 𝒅𝒙 = 𝒂𝒓𝒄𝒔𝒊𝒏𝒆 𝒙 + 𝑪 = (𝒍𝒏𝒙) 𝟒 𝟒 + 𝑪

不定积分 (3)∫sinx(cosx)2dx 4∫acdr=∫cotxdx 解:=∫(cosx)2·sinxdx 解:=∫品cosxdx =∫(cosx)2·d(-cosx) dsinx =-∫u2du u cosx -Sdu u=sinx 、 3+C In ul C In sinx+C

(�� �𝒐𝒄�) �𝒏𝒊𝒔� ׬ (3( ׬ (4𝟐𝒅𝒙 ( 𝒄𝒐𝒔𝒙 �𝒅𝒙𝒕𝒐𝒄� ׬ = �𝒅� �𝒏𝒊𝒔� (�� �𝒐𝒄�)׬ = :解 𝟐 ∙ 𝒔𝒊𝒏𝒙𝒅𝒙 �𝒅𝟐� �𝒔𝒐𝒄� = �� �� ׬ − = = − 𝒖 𝟑 𝟑 + 𝑪 ׬ = :解 𝟏 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔𝒙𝒅𝒙 ׬ = 𝟏 𝒔𝒊𝒏𝒙 𝒅𝒔𝒊𝒏𝒙 �� �𝒏𝒊𝒔� = �� ׬ = 𝒖 𝒅𝒖 = 𝒍𝒏 |𝒖| + 𝑪 (�� �𝒐𝒄�)׬ = 𝟐 ∙ 𝒅(−𝒄𝒐𝒔𝒙) = − (𝒄𝒐𝒔𝒙) 𝟑 𝟑 + 𝑪 = 𝒍𝒏 |𝒔𝒊𝒏𝒙| + 𝑪

不定积分 练习 (5)∫cosx(sinx)5dx (6∫adx=∫tanxdx 解:=∫(sinx)5·cosxdx 解:=∫sinxdx =∫(sinx)5.d(sinx) =∫d(-cosx) =∫udu u=sinx -Sidu u=coSx u6 =+C -Inlul C (sinx 6+C =-In cosx|+C

(�� �𝒊𝒔�) �𝒔𝒐𝒄� ׬ (5( ׬ (6𝟓𝒅𝒙 ( 𝒔𝒊𝒏𝒙 𝒄𝒐𝒔𝒙 �𝒅𝒙𝒏𝒂𝒕� ׬ = �𝒅� (�� �𝒊𝒔�)׬ =:解 𝟓 ∙ 𝒄𝒐𝒔𝒙𝒅𝒙 �𝒅𝟓� �𝒏𝒊𝒔� = �� �� ׬ = = 𝒖 𝟔 𝟔 + 𝑪 ׬ = :解 𝟏 𝒄𝒐𝒔𝒙 𝒔𝒊𝒏𝒙𝒅𝒙 ׬ = 𝟏 𝒄𝒐𝒔𝒙 𝒅(−𝒄𝒐𝒔𝒙) �� �𝒔𝒐𝒄� = �� ׬ −= 𝒖 𝒅𝒖 = −𝒍𝒏 |𝒖| + 𝑪 (�� �𝒊𝒔�)׬ = 𝟓 ∙ 𝒅(𝒔𝒊𝒏𝒙) = (𝒔𝒊𝒏𝒙) 𝟔 𝟔 + 𝑪 = −𝒍𝒏 |𝒄𝒐𝒔𝒙| + 𝑪 练习

不定积分 5)了dx 解:=∫sin:dr 解品2x =∫sinv元·d(2vx) =2∫sinudu u=Vx =2∫du u=V屁 =-2cosu+C 2arcsinu +C =-2cosvx+C =2 arcsiny√x+C

׬ (5( 𝒔𝒊𝒏 𝒙 𝒙 ׬ (6𝒅𝒙 ( 𝟏 𝒙−𝒙 𝟐 𝒅𝒙 ∙ �� �𝒊𝐬� ׬ = :解 𝟏 𝒙 𝒅𝒙 �� = �� �𝒅𝒖𝒏𝒊𝒔� ׬ �� = = −𝟐𝒄𝒐𝒔𝒖 + 𝑪 ׬ = :解 𝟏 𝟏−𝒙 ∙ 𝟏 𝒙 𝒅𝒙 ׬ = 𝟏 𝟏−( 𝒙) 𝟐 𝒅𝟐 𝒙 �� = �� ׬ �� = 𝟏 𝟏−𝒖𝟐 𝒅𝒖 = 𝟐𝒂𝒓𝒄𝒔𝒊𝒏𝒖 + 𝑪 (�� ��)�� ∙ �� �𝒊𝐬� ׬ = = −𝟐𝒄𝒐𝒔 𝒙 + 𝑪 = 𝟐𝒂𝒓𝒄𝒔𝒊𝒏 𝒙 + 𝑪

不定积分 sin- (7) dx dx x√x2- 解=∫sind =∫sin·d(-9 ∫ 1 d(- =-∫sinudu u= 1- X cosu+C =-arcsinu+C = cos=+C -arcsin+C

׬ (7( 𝒔𝒊𝒏𝟏 𝒙 𝒙 ׬ (8𝟐 𝒅𝒙 ( 𝟏 𝒙 𝒙 𝟐−𝟏 𝒅𝒙 �� �𝒊𝐬� ׬ = :解 𝒙 ∙ 𝟏 𝒙 𝟐 𝒅𝒙 𝒖 = 𝟏 𝒙 �𝒅𝒖𝒏𝒊𝒔� ׬ − = = 𝒄𝒐𝒔𝒖 + 𝑪 ׬ = :解 𝟏 𝟏− 𝟏 𝒙 𝟐 ∙ 𝟏 𝒙 𝟐 𝒅𝒙 = −𝒂𝒓𝒄𝒔𝒊𝒏𝒖 + 𝑪 �� �𝒊𝐬� ׬ = 𝒙 ∙ 𝒅(− 𝟏 𝒙 ) = 𝒄𝒐𝒔 𝟏 𝒙 + 𝑪 = −𝒂𝒓𝒄𝒔𝒊𝒏 𝟏 𝒙 + 𝑪 ׬ = 𝟏 𝟏− 𝟏 𝒙 𝟐 ∙ 𝒅(− 𝟏 𝒙 ) ׬ − = 𝟏 𝟏− 𝒖𝟐 ∙ 𝒅𝒖

共15页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档