电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 07 Digital Filter Design

Chapter 7 Digital Filter design
Chapter 7 Digital Filter Design

Objective- Determination of a realizable transfer function G(z) approximating a given irequency response specification Is an important step in the development of a digital filter If an IIr filter is desired, G(z) should be a stable real rational function Digital filter design is the process of deriving the transfer function g(z)
• Objective - Determination of a realizable transfer function G(z) approximating a given frequency response specification is an important step in the development of a digital filter • If an IIR filter is desired, G(z) should be a stable real rational function • Digital filter design is the process of deriving the transfer function G(z)

87.1 Digital Filter Specifications Usually, either the magnitude and/or the phase(delay response is specified for the design of digital filter for most applications In some situations, the unit sample response or the step response may be specified In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification
§7.1 Digital Filter Specifications • Usually, either the magnitude and/or the phase (delay) response is specified for the design of digital filter for most applications • In some situations, the unit sample response or the step response may be specified • In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification

87.1 Digital Filter Specifications .. We discuss in this course only the magnitude approximation problem There are four basic types of ideal filters with magnitude responses as shown below HLp(e /o) HHP(e/) 0 兀 兀 HBp(e) π-0c2-0cl Ocl (c2 O 兀-0c2-0cl0cl0c2π
§7.1 Digital Filter Specifications • We discuss in this course only the magnitude approximation problem • There are four basic types of ideal filters with magnitude responses as shown below π 1 ω 0 ωc –ωc HLP(e jω) − π π ω 0 ωc –ωc 1 HHP(e jω) − π − π π ω –1 –ωc1 ωc1 –ωc2 ωc2 HBP (e jω) − π π ω 1 –ωc1 ωc1 –ωc2 ωc2 HBS(e jω)

87.1 Digital Filter Specifications As the impulse response corresponding to each of these ideal filters is noncausal and of infinite length, these filters are not realizable In practice, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances In addition a transition band is specified between the passband and ° stopband
§7.1 Digital Filter Specifications • As the impulse response corresponding to each of these ideal filters is noncausal and of infinite length, these filters are not realizable • In practice, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances • In addition, a transition band is specified between the passband and stopband

87.1 Digital Filter Specifications For example, the magnitude response G(elo) of a digital lowpass filter may be given as indicated below (e Passband. Stopband-*
§7.1 Digital Filter Specifications • For example, the magnitude response |G(ejω)| of a digital lowpass filter may be given as indicated below

87.1 Digital Filter Specifications A S indicated in the iigure, In the passband, defined by0≤0≤0pwe require that G(ej@)=1 with an error +8 1.e 1-8≤Ge)s1+S,|o≤0 In the stopband, defined by≤0≤π,we require that G(ejo)=o with an error 8 i.e., G(ej@)s 8n, @ s slosh
§7.1 Digital Filter Specifications • As indicated in the figure, in the passband, defined by 0≤ω≤ωp , we require that |G(ejω)|≅1 with an error ±δp , i.e., 1- δp ≤ |G(ejω)| ≤ 1+ δp , | ω| ≤ ωp • In the stopband, defined by ωs ≤ω≤π, we require that |G(ejω)|≅0 with an error δs i.e., |G(ejω)| ≤ δp , ωs ≤|ω|≤π

87.1 Digital Filter Specifications passband edge frequency O- stopband edge frequency p-peak ripple value in the passband 8- peak ripple value in the stopband Since g(elo) is a periodic function of a, and G(eo)l of a real-coefficient digital filter is an even function of o As a result, filter specifications are given only for the frequency range 0 sasn
§7.1 Digital Filter Specifications • ωp - passband edge frequency • ωs - stopband edge frequency • δp - peak ripple value in the passband • δs - peak ripple value in the stopband • Since G(ejω) is a periodic function of ω, and |G(ejω)| of a real-coefficient digital filter is an even function of ω • As a result, filter specifications are given only for the frequency range 0 ≤|ω|≤π

87.1 Digital Filter Specifications Specifications are often given in terms of loss function G(o)=-20logoIG(ejo)lin d B Peak passband ripple O1=2090(1-8n)dB Minimum stopband attenuation 03=-20log0(、)dB
§7.1 Digital Filter Specifications • Specifications are often given in terms of loss function G(ω)=-20log10 |G(ejω)| in dB • Peak passband ripple αp= -20log10 (1- δp ) dB • Minimum stopband attenuation αs= -20log10 (δs ) dB

87.1 Digital Filter Specifications magnitude specifications may alternately be given in a normalized form as indicated below Alejo +ε Stopband- Transiton
§7.1 Digital Filter Specifications • Magnitude specifications may alternately be given in a normalized form as indicated below
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 06 Digital Filter Structures.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 05 Digital Processing of Continuous-Time Signals.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 04 Frequency-domain Representation of LTI Discrete-Time Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 02 Discrete-Time Signals and Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Introduction(彭启琮).pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 01 Continuous-time Signals and Systems.pdf
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.2 A/D转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.1 D/A转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(目录).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.2 555电路的应用实例.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.1 555电路的工作原理.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.6 二进制计数器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.5 寄存器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.4 D触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.3 JK触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.2 可控RS触发器.ppt
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 09 Analysis of Finite Wordlength Effects.pdf
- 中国科学技术大学:《电路》课程教学资源(PPT课件)课程简介(刘同怀)、第1章 基尔霍夫定律 1.1 电路元件及其表征 1.2 电路的结构 1.3 基尔霍夫电流定律 KCL 1.4 基尔霍夫电压定律 KVL.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.13 Y-△电阻网络的等效变换.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.15 线性直流电路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.14 双口网络互联.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第4章 非线性直流电路 4.1 非线性二端电阻元件 4.2 非线性直流电路方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.5 电路的线图 1.6 独立的KVL方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.9 Tellgen定理 第2章 电路元件 2.1 电压源和电流源 2.2 受控电源 2.3 电阻元件 2.4 多端电阻和二端口电阻.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第2章 电路元件 2.5 电容元件 2.6 电感元件 第3章 线性直流电路 3.1 直流电路 3.2 含源支路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.3 支路法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)支路法(回顾)、网孔分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)节点分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.7 叠加定理 3.8 互易定理.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.10 不含独立源的单口网络 3.11 含独立源的单口网络 3.12 不含独立源双口网络.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)练习题(含答案).ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)习题与解答.ppt
- 《电工技术》课程教学课件(PPT电子教案讲稿)放大电路中的反馈.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第二章 连续信号与系统的时域分析.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第六章 离散信号与系统的变换域分析.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第七章 状态变量分析.ppt