电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 06 Digital Filter Structures

Chapter 6 Digital Filter Structures
Chapter 6 Digital Filter Structures

§6. Introduction The convolution sum description of an Lti discrete-time system can, in principle, be used to implement the system For an IR finite-dimensional system this approach is not practical as here the impulse response is of infinite length However, a direct implementation of the IIR finite-dimensional system is ractical
• The convolution sum description of an LTI discrete-time system can, in principle, be used to implement the system • For an IIR finite-dimensional system this approach is not practical as here the impulse response is of infinite length • However, a direct implementation of the IIR finite-dimensional system is practical §6.1 Introduction

§6. Introduction Here the input-output relation involves a finite sum of products y=∑ *k=kJn-k1+M k=ePhrin On the other hand, an fir system can be implemented using the convolution sum which is a finite sum of products y]=∑20列人]xm-k
• Here the input-output relation involves a finite sum of products: ∑ = ∑ = = − − + − M k k N k k y n d y n k p x n k 1 0 [ ] [ ] [ ] ∑ = = − N k y n h k x n k 0 [ ] [ ] [ ] §6.1 Introduction • On the other hand, an FIR system can be implemented using the convolution sum which is a finite sum of products:

§6. Introduction The actual implementation of an LtI digital filter can be either in software or hardware form, depending on applications In either case, the signal variables and the filter coefficients cannot be represented with finite precision
• The actual implementation of an LTI digital filter can be either in software or hardware form, depending on applications • In either case, the signal variables and the filter coefficients cannot be represented with finite precision §6.1 Introduction

§6. Introduction A structural representation using interconnected basic building blocks is the first step in the hardware or software implementation of an Lti digital filter The structural representation provides the key relations between some pertinent internal variables with the input and output that in turn provides the key to the implementation
• A structural representation using interconnected basic building blocks is the first step in the hardware or software implementation of an LTI digital filter • The structural representation provides the key relations between some pertinent internal variables with the input and output that in turn provides the key to the implementation §6.1 Introduction

86. 1.1 Block Diagram Representation In the time domain, the input-output relations of an lti digital filter is given by the convolution sum y]=2∑k=小kn- or, by the linear constant coefficient difference equation y小=-∑:4yn-k]+2k20pm-k
§6.1.1 Block Diagram Representation • In the time domain, the input-output relations of an LTI digital filter is given by the convolution sum ∑ ∞ =−∞ = − k y[n] h[k] x[n k] ∑ = ∑ = = − − + − M k k N k k y n d y n k p x n k 1 0 [ ] [ ] [ ] or, by the linear constant coefficient difference equation

86. 1.1 Block Diagram Representation For the implementation of an lti digital filter the input-output relationship must be described by a valid computational algorithm To illustrate what we mean by a computational algorithm, consider the causal first-order lti digital filter shown below yn
§6.1.1 Block Diagram Representation • For the implementation of an LTI digital filter, the input-output relationship must be described by a valid computational algorithm • To illustrate what we mean by a computational algorithm, consider the causal first-order LTI digital filter shown below

86. 1.1 Block Diagram Representation The filter is described by the difference equation yIn=-diyln-1+poX/n+p,xn-1 Using the above equation we can compute yn for n20 knowing the initial condition yIn-1 and the input xn] for n>-1
§6.1.1 Block Diagram Representation • The filter is described by the difference equation y[n]=-d1 y[n-1]+p0 x[n]+p1 x[n-1] • Using the above equation we can compute y[n] for n≥0 knowing the initial condition y[n-1] and the input x[n] for n ≥-1

86. 1.1 Block Diagram Representation y|0=dy-]+px|0+p1x- yIl=-dy 0+poxl+p1X10 y2=-dyll+px2+px1 ●●● We can continue this calculation for any value of the time index n we d esire
§6.1.1 Block Diagram Representation y[0]=-d1y[-1]+p0x[0]+p1x[-1] y[1]=-d1 y[0]+p0 x[1]+p1 x[0] y[2]=-d1 y[1]+p0 x[2]+p1 x[1] .… • We can continue this calculation for any value of the time index n we desire

86. 1.1 Block Diagram Representation Each step of the calculation requires a knowledge of the previously calculated value of the output sample (delayed value of the output), the present value of the input sample, and the previous value of the input sample (delayed value of the input) As a result, the first-order difference equation can be interpreted as a valid computational algorithm
§6.1.1 Block Diagram Representation • Each step of the calculation requires a knowledge of the previously calculated value of the output sample (delayed value of the output), the present value of the input sample, and the previous value of the input sample (delayed value of the input) • As a result, the first-order difference equation can be interpreted as a valid computational algorithm
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 05 Digital Processing of Continuous-Time Signals.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 04 Frequency-domain Representation of LTI Discrete-Time Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 02 Discrete-Time Signals and Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Introduction(彭启琮).pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 01 Continuous-time Signals and Systems.pdf
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.2 A/D转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.1 D/A转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(目录).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.2 555电路的应用实例.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.1 555电路的工作原理.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.6 二进制计数器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.5 寄存器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.4 D触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.3 JK触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.2 可控RS触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.1 基本RS触发器.ppt
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 07 Digital Filter Design.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 09 Analysis of Finite Wordlength Effects.pdf
- 中国科学技术大学:《电路》课程教学资源(PPT课件)课程简介(刘同怀)、第1章 基尔霍夫定律 1.1 电路元件及其表征 1.2 电路的结构 1.3 基尔霍夫电流定律 KCL 1.4 基尔霍夫电压定律 KVL.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.13 Y-△电阻网络的等效变换.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.15 线性直流电路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.14 双口网络互联.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第4章 非线性直流电路 4.1 非线性二端电阻元件 4.2 非线性直流电路方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.5 电路的线图 1.6 独立的KVL方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.9 Tellgen定理 第2章 电路元件 2.1 电压源和电流源 2.2 受控电源 2.3 电阻元件 2.4 多端电阻和二端口电阻.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第2章 电路元件 2.5 电容元件 2.6 电感元件 第3章 线性直流电路 3.1 直流电路 3.2 含源支路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.3 支路法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)支路法(回顾)、网孔分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)节点分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.7 叠加定理 3.8 互易定理.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.10 不含独立源的单口网络 3.11 含独立源的单口网络 3.12 不含独立源双口网络.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)练习题(含答案).ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)习题与解答.ppt
- 《电工技术》课程教学课件(PPT电子教案讲稿)放大电路中的反馈.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第二章 连续信号与系统的时域分析.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第六章 离散信号与系统的变换域分析.ppt