电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 04 Frequency-domain Representation of LTI Discrete-Time Systems

Chapter 4 requency-domain Representation of LtI Discrete-Time Systems
Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems

84.1 LTI Discrete-Time Systems in the transform domain Such transform-domain representations provide additional insight into the behavior of such systems It is easier to design and implement these ystems in the transform-domain for certain applications We consider now the use of the dtft and the z-transform in developing the transform domain representations of an LtI system
§4.1 LTI Discrete-Time Systems in the Transform Domain • Such transform-domain representations provide additional insight into the behavior of such systems • It is easier to design and implement these systems in the transform-domain for certain applications • We consider now the use of the DTFT and the z-transform in developing the transformdomain representations of an LTI system

84.1 LTI Discrete-Time Systems in the transform domain In this course we shall be concerned with lti discrete-time systems characterized by linear constant coefficient difference equations of the form: ∑ koln-k]=∑Dm-k k=0 k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • In this course we shall be concerned with LTI discrete-time systems characterized by linear constant coefficient difference equations of the form: ∑ ∑ = = − = − M k k N k k d y n k p x n k 0 0 [ ] [ ]

84.1 LTI Discrete-Time Systems in the transform domain applying the dtft to the difference equation and making use of the linearity and the time invariance properties we arrive at the input- output relation in the transform-domain as iok ∑de~0Y(e0)=∑p he yok X(e0) k=0 k=0 where Y(ej)and X(ej@)are the tfTs of yln andx四l respectiv rely
§4.1 LTI Discrete-Time Systems in the Transform Domain • Applying the DTFT to the difference equation and making use of the linearity and the timeinvariance properties we arrive at the inputoutput relation in the transform-domain as ( ) ( ) 0 0 ω = ω − ω = − ω ∑ = ∑ j M k j k k j N k j k k d e Y e p e X e where Y(ejω) and X(ejω) are the DTFTs of y[n] and x[n], respectively

84.1 LTI Discrete-Time Systems in the transform domain In developing the transform-domain representation of the difference equation, it has been tacitly assumed that x(ej) and Y(ejo) exist The le previous equation can be alternatel written as e/0 ∑ (l)=∑ h?e圆oh LX(e/o k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • In developing the transform-domain representation of the difference equation, it has been tacitly assumed that X(ejω) and Y(ejω) exist • The previous equation can be alternately written as ( ) ( ) 0 0 ω = ω − ω = − ω = ∑ ∑ j M k j k k j N k j k k d e Y e p e X e

84.1 LTI Discrete-Time Systems in the transform domain Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties we arrive at ∑dkzY()=∑pk=X() k=0 k=0 where y(z) and x(z denote the z-transforms of yIn and xn with associated rOCs, respectively
§4.1 LTI Discrete-Time Systems in the Transform Domain • Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties we arrive at d z Y(z) p z X (z) M k k k N k k ∑ k ∑ = − = − = 0 0 where Y(z) and X(z) denote the z-transforms of y[n] and x[n] with associated ROCs, respectively

84.1 LTI Discrete-Time Systems in the transform domain A more convenient form of the z-domain representation of the diffe Terence equation is given by -k )=∑pk=-X() k=0 k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • A more convenient form of the z-domain representation of the difference equation is given by d z Y(z) p z X (z) M k k k N k k k = ∑ ∑ = − = − 0 0

°§42 The Frequency Response Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite number of sinusoidal discrete-time signals of different angular frequencies Thus. knowing the response of the ltl system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property
§4.2 The Frequency Response • Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite, number of sinusoidal discrete-time signals of different angular frequencies • Thus, knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property

°§42 The Frequency Response The quantity H(ejo) is called the frequency response of the lti discrete time system H(ejo) provides a frequency-domain description of the system H(elo) is precisely the dtft of the impulse response (hn of the system
§4.2 The Frequency Response • The quantity H(ejω) is called the frequency response of the LTI discretetime system • H(ejω) provides a frequency-domain description of the system • H(ejω) is precisely the DTFT of the impulse response {h[n]} of the system

°§42 The Frequency Response H(ej@), in general, is a complex function of@ with a period2兀 It can be expressed in terms of its real and imaginary parts H(ej@=hre(ejo +j him(ejoy or, in terms of its magnitude and phase e H(ejo)l ee(a) where 6(0)=rgH(
§4.2 The Frequency Response • H(ejω), in general, is a complex function of ω with a period 2π • It can be expressed in terms of its real and imaginary parts H(ejω)= Hre(ejω) +j Him(ejω) or, in terms of its magnitude and phase, H(ejω)=|H(ejω)| eθ(ω) where θ(ω)=argH(ejω)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 02 Discrete-Time Signals and Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Introduction(彭启琮).pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 01 Continuous-time Signals and Systems.pdf
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.2 A/D转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.1 D/A转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(目录).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.2 555电路的应用实例.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.1 555电路的工作原理.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.6 二进制计数器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.5 寄存器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.4 D触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.3 JK触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.2 可控RS触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.1 基本RS触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用(目录).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第15章 组合逻辑电路(小结).ppt
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 05 Digital Processing of Continuous-Time Signals.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 06 Digital Filter Structures.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 07 Digital Filter Design.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 09 Analysis of Finite Wordlength Effects.pdf
- 中国科学技术大学:《电路》课程教学资源(PPT课件)课程简介(刘同怀)、第1章 基尔霍夫定律 1.1 电路元件及其表征 1.2 电路的结构 1.3 基尔霍夫电流定律 KCL 1.4 基尔霍夫电压定律 KVL.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.13 Y-△电阻网络的等效变换.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.15 线性直流电路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.14 双口网络互联.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第4章 非线性直流电路 4.1 非线性二端电阻元件 4.2 非线性直流电路方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.5 电路的线图 1.6 独立的KVL方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.9 Tellgen定理 第2章 电路元件 2.1 电压源和电流源 2.2 受控电源 2.3 电阻元件 2.4 多端电阻和二端口电阻.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第2章 电路元件 2.5 电容元件 2.6 电感元件 第3章 线性直流电路 3.1 直流电路 3.2 含源支路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.3 支路法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)支路法(回顾)、网孔分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)节点分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.7 叠加定理 3.8 互易定理.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.10 不含独立源的单口网络 3.11 含独立源的单口网络 3.12 不含独立源双口网络.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)练习题(含答案).ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)习题与解答.ppt
- 《电工技术》课程教学课件(PPT电子教案讲稿)放大电路中的反馈.ppt