电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 09 Analysis of Finite Wordlength Effects

Chapter y Analysis of finite Wordlengt th effects
Chapter 9 Analysis of Finite Wordlength Effects

Introduction Ideally, the system parameters along with the signal variables have infinite precision taking any value between -oo and oo In practice they can take only discrete values within a specified range since the registers of the digital machine where they are stored are of finite length The discretization process results in nonlinear difference equations characterizing the discrete-time systems
Introduction • Ideally, the system parameters along with the signal variables have infinite precision taking any value between -∞ and ∞ • In practice, they can take only discrete values within a specified range since the registers of the digital machine where they are stored are of finite length • The discretization process results in nonlinear difference equations characterizing the discrete-time systems

Introduction . These nonlinear equations in principle are almost impossible to analyze and deal with exactly However, if the quantization amounts are small compared to the values of signal variables and filter parameters a simpler approximate theory based on a statistical model can be applied
Introduction • These nonlinear equations, in principle, are almost impossible to analyze and deal with exactly • However, if the quantization amounts are small compared to the values of signal variables and filter parameters, a simpler approximate theory based on a statistical model can be applied

Introduction Using the statistical model, it is possible to derive the effects of discretization and develop results that can be verified experimentally · Sources of errors Filter coefficient quantization (2)A/D conversion (3)Quantization of arithmetic operations (4) Limit cycles
Introduction • Using the statistical model, it is possible to derive the effects of discretization and develop results that can be verified experimentally • Sources of errors - (1) Filter coefficient quantization (2) A/D conversion (3) Quantization of arithmetic operations (4) Limit cycles

Introduction Consider the first-order iir digital filter yIn=ayn-1+x/n where yIn is the output signal and xn is the input signal When implemented on a digital machine, the filter coefficient o can assume only certain discrete values a approximating the original design value a
Introduction • Consider the first-order IIR digital filter y[n]= αy[n-1]+x[n] where y[n] is the output signal and x[n] is the input signal α ^ • When implemented on a digital machine, the filter coefficient α can assume only certain discrete values approximating the original design value α

Introduction The desired transfer function is H(二) 2 1-az The actual transfer function implemented is 2 z-0 which may be much different from the desired a transfer function H(z)
Introduction • The desired transfer function is α α − = − = − z z z H z 1 1 1 ( ) − α = z z H(z) ^ ^ which may be much different from the desired transfer function H(z) • The actual transfer function implemented is

Introduction Thus, the actual frequency response may be quite different from the desired trequency response Coefficient quantization problem is similar to the sensitivity problem encountered in analog filter implementation
Introduction • Thus, the actual frequency response may be quite different from the desired frequency response • Coefficient quantization problem is similar to the sensitivity problem encountered in analog filter implementation

Introduction A/D Conversion Error -generated by the filter input quantization process If the input sequence xn has been obtained by sampling an analog signal a(t, then the actual input to the digital filter is xn=rinteln where en is the a/d conversion error
Introduction • A/D Conversion Error - generated by the filter input quantization process • If the input sequence x[n] has been obtained by sampling an analog signal xa (t), then the actual input to the digital filter is x[n] = x[n]+ e[n] ^ where e[n] is the A/D conversion error

Introduction Arithmetic Quantization Error- For the first-order digital filter, the desired output of the multiplier is v]=cy{n-1] . Due to product quantization, the actual output of the multiplier of the implemented filter is 印n=0yn-1]+a团=小+am where eon is the product roundoff error
Introduction • Arithmetic Quantization Error - For the first-order digital filter, the desired output of the multiplier is v[n] =αy[n −1] v[n] y[n 1] e [n] v[n] e [n] = α − + α = + α ^ where eα[n] is the product roundoff error • Due to product quantization, the actual output of the multiplier of the implemented filter is

Introduction Limit Cycles- The nonlinearity of the arithmetic quantization process may manifest in the form of oscillations at the filter output usually in the absence of input or sometimes, in the presence of constant input signals or sinusoidal input signals
Introduction • Limit Cycles - The nonlinearity of the arithmetic quantization process may manifest in the form of oscillations at the filter output, usually in the absence of input or, sometimes, in the presence of constant input signals or sinusoidal input signals
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 07 Digital Filter Design.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 06 Digital Filter Structures.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 05 Digital Processing of Continuous-Time Signals.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 04 Frequency-domain Representation of LTI Discrete-Time Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 02 Discrete-Time Signals and Systems.pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Introduction(彭启琮).pdf
- 电子科技大学:《数字信号处理 Digital Signal Processing》课程教学资源(英文讲义)Chapter 01 Continuous-time Signals and Systems.pdf
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.2 A/D转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器 18.1 D/A转换器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第18章 D/A和A/D转换器(目录).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.2 555电路的应用实例.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用 17.1 555电路的工作原理.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第17章 555电路及应用.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用(小结).ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.6 二进制计数器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.5 寄存器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.4 D触发器.ppt
- 《电工电子技术》课程教学资源(PPT课件讲稿)第16章 触发器及其应用 16.3 JK触发器.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)课程简介(刘同怀)、第1章 基尔霍夫定律 1.1 电路元件及其表征 1.2 电路的结构 1.3 基尔霍夫电流定律 KCL 1.4 基尔霍夫电压定律 KVL.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.13 Y-△电阻网络的等效变换.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.15 线性直流电路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.14 双口网络互联.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第4章 非线性直流电路 4.1 非线性二端电阻元件 4.2 非线性直流电路方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.5 电路的线图 1.6 独立的KVL方程.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第1章 基尔霍夫定律 1.9 Tellgen定理 第2章 电路元件 2.1 电压源和电流源 2.2 受控电源 2.3 电阻元件 2.4 多端电阻和二端口电阻.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第2章 电路元件 2.5 电容元件 2.6 电感元件 第3章 线性直流电路 3.1 直流电路 3.2 含源支路.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.3 支路法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)支路法(回顾)、网孔分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)节点分析法.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.7 叠加定理 3.8 互易定理.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)第3章 线性直流电路 3.10 不含独立源的单口网络 3.11 含独立源的单口网络 3.12 不含独立源双口网络.ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)练习题(含答案).ppt
- 中国科学技术大学:《电路》课程教学资源(PPT课件)习题与解答.ppt
- 《电工技术》课程教学课件(PPT电子教案讲稿)放大电路中的反馈.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第二章 连续信号与系统的时域分析.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第六章 离散信号与系统的变换域分析.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第七章 状态变量分析.ppt
- 《信号与系统》课程教学资源(PPT讲义课件)第三章 连续信号与系统的频域分析.ppt