中国高校课件下载中心 》 教学资源 》 大学文库

华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.2.2)柯西中值定理

文档信息
资源类别:文库
文档格式:PPT
文档页数:1
文件大小:44.5KB
团购合买:点击进入团购
内容简介
定理如果函数(x)和g(x)满足如下条件: (1)(x)和gx)都是当x-a时的无穷小(或无穷大); (2)x)和g(x)在点a的某去心邻域内都可导且g(x)≠0; (3m/(x)存在或为无穷大
刷新页面文档预览

定理如果函数f(x)和g(x满足如下条件: (1)f(x)和g(x)都是当xx时的无穷小(或无穷大); (2)fx)和g(x)在点a的某去心邻域内都可导且g(x)≠0; f() (3)lim 存在(或为无穷大) x→>ag(x) f(x 那 lim f'(x) Im x→a g(x) x> g(x) 简要证明令fa)=g(a)=0,于是f(x)及g(x)在点a的某邻域 内连续.在该邻域内应用柯西中值定理,有 lim f(r) 2)=lim /(x)-f(a)=lim /(5) xa g(x) x>a g(x)-gla) x>(5) f(2) =lim I(r) 5→ag(2)x→ag(x) 负”“返回 下页

上页 返回 下页 令f(a)=g(a)=0 于是f(x)及g(x)在点a的某邻域 内连续 在该邻域内应用柯西中值定理,有 (3) ( ) ( ) lim g x f x x a   → 存在(或为无穷大) 那么 ( ) ( ) lim g x f x x→a ( ) ( ) lim g x f x x a   = →  简要证明 ( ) ( ) lim ( ) ( ) ( ) ( ) lim ( ) ( ) lim   g f g x g a f x f a g x f x x a x a x a   = − − = → → → ( ) ( ) lim    g f a   = → ( ) ( ) lim g x f x x a   = →  ( ) ( ) lim ( ) ( ) ( ) ( ) lim ( ) ( ) lim   g f g x g a f x f a g x f x x a x a x a   = − − = → → → ( ) ( ) lim ( ) ( ) ( ) ( ) lim ( ) ( ) lim   g f g x g a f x f a g x f x x a x a x a   = − − = → → → ( ) ( ) lim    g f a   = → ( ) ( ) lim g x f x x a   = →  返回 定理 如果函数f(x)和g(x)满足如下条件 (1) f(x)和g(x)都是当x→a时的无穷小(或无穷大) (2) f(x)和g(x)在点a的某去心邻域内都可导且g(x)0

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档