华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.5)函数的极值与最大值最小值

§3.5函数的极值与最大值最小值 、函数的极值及其求法 最大值最小值问题 自
§3.5 函数的极值与最大值最小值 首页 上页 返回 下页 结束 铃 一、函数的极值及其求法 二、最大值最小值问题

、函数的极值及其求法 今函数的极值 设函数x)在点x0的某邻域U(xo)内有定义,如果对于任意 x∈U(x0)有 f(x)(x0) 则称f(x0是函数f(x)的一个极大值(或板小值) 函数的极大值与极小值统称为函数的极值,使函数取得 极值的点称为极值点 y=(x) 提问: fa)和f(b)是极值吗? 观察与思考: 观察极值与切线的关系.Oax1x2x3x4x5bx 首员”上员”这回负结東
首页 上页 返回 下页 结束 铃 提问: f(a)和 f(b)是极值吗? ❖函数的极值 下页 一、函数的极值及其求法 设函数f(x)在点x0的某邻域U(x0 )内有定义 如果对于任意 xU(x0 )有 f(x)f(x0 ) (或f(x)f(x0 )) 则称f(x0 )是函数f(x)的一个极大值(或极小值) 。 x1 x2 x3 x4 x5 函数的极大值与极小值统称为函数的极值 使函数取得 极值的点称为极值点 观察与思考: 观察极值与切线的关系

今定理1(必要条件) 设函数八(x)在点x处可导,且在x处取得极值 那么∫'(x)=0.> 驻点 使导数f(x)为零的点(方程f(x)=0的实根)称为函数 f(x)的驻点 讨论: 极值点是否一定是驻点? y=(x) 驻点是否一定是极值点? 考察x=0是否是函数y=x3的 驻点,是否是函数的极值点 a x1 x2 x3 x4 x 首”上”返回”结束”铃
首页 上页 返回 下页 结束 铃 设函数f(x)在点x0处可导 且在x0处取得极值 那么f (x0 )=0 •驻点 使导数f (x)为零的点(方程f (x)=0的实根)称为函数 f(x)的驻点 ❖定理1(必要条件) 下页 >>> 讨论: 极值点是否一定是驻点? 驻点是否一定是极值点? 考察x=0是否是函数y=x 3的 驻点 是否是函数的极值点 x1 x2 x3 x4 x5

今定理1(必要条件) 设函数八(x)在点x处可导,且在x处取得极值 那么∫'(x)=0 驻点 使导数f(x)为零的点(方程f(x)=0的实根)称为函数 f(x)的驻点 观察与思考: (1)观察曲线的升降与极值 y=(x) 之间的关系 (2)观察曲线的凹凸性与极 值之间的关系 a x1 x2 x3 x4 x 首”上”返回”结束”铃
首页 上页 返回 下页 结束 铃 设函数f(x)在点x0处可导 且在x0处取得极值 那么f (x0 )=0 •驻点 使导数f (x)为零的点(方程f (x)=0的实根)称为函数 f(x)的驻点 ❖定理1(必要条件) 下页 观察与思考: (1)观察曲线的升降与极值 之间的关系 (2)观察曲线的凹凸性与极 值之间的关系 x1 x2 x3 x4 x5

今定理2(第一充分条件) 设函数x)在x处连续,且在(a,x0)(x0b)内可导 (1)如果在(a,x)内f(x)>0,在(x0b)内f(x)0,那么函数fx) 在x处取得极小值 (3)如果在(a,x0)及(x,b)内f(x)的符号相同,那么函数fx) 在x处没有极值 y=(x) a x1 x2 x3 x4 x 首”上”返回”结束”铃
首页 上页 返回 下页 结束 铃 设函数f(x)在x0处连续且在(a x0 )(x0 b)内可导 (1)如果在(a x0 )内f (x)0 在(x0 b)内f (x)0 那么函数f(x) 在x0处取得极大值 (2)如果在(a x0 )内f (x)0 在(x0 b)内f (x)0 那么函数f(x) 在x0处取得极小值 (3)如果在(a x0 )及(x0 b)内 f (x)的符号相同 那么函数f(x) 在x0处没有极值 下页 ❖定理2(第一充分条件) x1 x2 x3 x4 x5

今定理2(第一充分条件) 设函数x)在x处连续,且在(a,x0)(x0b)内可导 (1)如果在(a,x)内f(x)>0,在(x0b)内f(x)0,那么函数fx) 在x处取得极小值 (3)如果在(a,x0)及(x,b)内f(x)的符号相同,那么函数fx) 在x处没有极值 ☆确定极值点和极值的步骤 (1)求出导数f(x); (2)求出x)的全部驻点和不可导点; (3)考察在每个驻点和不可导点的左右邻近f(x)的符号; (4)确定出函数的所有极值点和极值 首贝上贝返回 结束
首页 上页 返回 下页 结束 铃 ❖确定极值点和极值的步骤 (1)求出导数f (x) (2)求出f(x)的全部驻点和不可导点 (3)考察在每个驻点和不可导点的左右邻近f (x)的符号 (4)确定出函数的所有极值点和极值 下页 设函数f(x)在x0处连续且在(a x0 )(x0 b)内可导 (1)如果在(a x0 )内f (x)0 在(x0 b)内f (x)0 那么函数f(x) 在x0处取得极大值 (2)如果在(a x0 )内f (x)0 在(x0 b)内f (x)0 那么函数f(x) 在x0处取得极小值 (3)如果在(a x0 )及(x0 b)内 f (x)的符号相同 那么函数f(x) 在x0处没有极值 ❖定理2(第一充分条件)

例1求函数f(x)=(x-4(x+1)2的极值 解(1)f(x)在(-∞,+∞)内连续,除x=1外处处可导,且 f(x)= 33 x+1 (2)令f(x)=0,得驻点x=1;x=-1为fx)的不可导点; (3)列表判断 x(-∞,-1)-1(-1,1)1(1,+∞) f(x)+不可导 0 f(x) 0 34 (4)极大值为f(-1)=0,极小值为f()=-34 新页上页返回 页结束铃
首页 上页 返回 下页 结束 铃 例 1 求函数 3 2 例1 f (x)=(x−4) (x+1) 的极值 解 (1)f(x)在(− +)内连续 除x=−1外处处可导且 3 3 1 5( 1) ( ) + − = x x f x (3)列表判断 (2)令f (x)=0 得驻点x=1 x=−1为f(x)的不可导点 3 −3 4 3 −3 4 3 −3 4 3 −3 4 (− −1) −1 (−1 1) 1 (1 +) + 不可导 − 0 + x f (x) f(x) ↗ 0 ↘ 3 ↗ −3 4 (4)极大值为 f(−1)=0 极小值为 3 f (1)=−3 4

◆定理3(第二充分条件) 设函数x)在点x处具有二阶导数且f(xo)=0,f(x0)≠0, 那么 (1)当"(x00时,函数fx)在x处取得极小值 应注意的问题: 如果f(x)=0,f"(x)=0,则定理3不能应用,但不能由此 说明f(xo)不是f(x)的极值。 讨论: 函数(x)=x,g(x)=x3在点x=0是否有极值?> 首页上页返回 页结束铃
首页 上页 返回 下页 结束 铃 ❖定理3(第二充分条件) 设函数f(x)在点x0处具有二阶导数且f (x0 )=0 f (x0 )0 那么 (1)当f (x0 )0时 函数f(x)在x0处取得极大值 (2)当f (x0 )0时 函数f(x)在x0处取得极小值 应注意的问题: 如果f (x0 )=0 f (x0 )=0 则定理3不能应用 但不能由此 说明f (x0 )不是f (x)的极值。 讨论: 函数f(x)=x 4 g(x)=x 3在点x=0是否有极值? 下页 >>> >>>

例2求函数fx)=(x2-1)2+1的极值 解∫(x)=6x(x2-1)2 令∫(x)=0,求得驻点x=1,x2=0,x32=1 f"(x)=6(x2-1)5x2-1) 因为"(0)=6>0,所以f(x)在x=0处取得极小值, 极小值为f(0)=0 因为f"(-1)=f(1)=0,所以用定理3无法判别 因为在-1的左右邻域内f(x)<0, =(x 所以(x)在-1处没有极值 同理,f(x)在1处也没有极值 O 自 返回 下页 结束
首页 上页 返回 下页 结束 铃 例2 求函数f(x)=(x 2−1)3+1的极值 解 f (x)=6x(x 2−1)2 令f (x)=0 求得驻点x1=−1 x2=0 x3=1 f (x)=6(x 2−1)(5x 2−1) 因为f (0)=60 所以f (x)在x=0处取得极小值 极小值为f(0)=0 因为f (−1)=f (1)=0 所以用定理3无法判别 因为在−1的左右邻域内f (x)0 所以f(x)在−1处没有极值 同理 f(x)在1处也没有极值 首页

二、最大值最小值问题 观察与思考: 观察哪些点有可能成为函数的最大值或最小值点, 怎样求函数的最大值和最小值 =f( o axI x2 x3 x4 xs bx 上页 返回 结束
首页 上页 返回 下页 结束 铃 二、最大值最小值问题 观察与思考: 观察哪些点有可能成为函数的最大值或最小值点 怎样求函数的最大值和最小值 x1 x2 x3 x4 x5 M m 下页
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.5.3)函数f(x)=x4.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.5.2)定理3(第二充分条件).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.5.1)定理1.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.4)函数的单调性与曲线的凹凸性.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.4.5)二阶导数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.3)泰勒公式.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.2)洛必达法则.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.2.2)柯西中值定理.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.2.1)未定式.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.1)中值定理.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.1.1)拉格朗日.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.7)函数的微分.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.6)由方程所确定的函数的导数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.5)高阶导数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2)函数的求导法则.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2.5)复合 函数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2.4)反函数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2.3)导数的定义续.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2.2)导数的定义.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第二章(2.2.1)导数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.6)函数图形的描绘.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第三章(3.7)曲率.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第四章(4.1)不定积分的概念与性质.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第四章(4.2)换元积分法.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第四章(4.3)分部积分法.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第四章(4.4)有理函数的积分.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第四章(4.5)积分表的使用.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.1.1)性质6.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.1.3)性质3.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.1)定积分概念与性质.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.2.1)定理1(积分上限函数的导数).ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.2)微积分基本公式.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.3.1)连续导数.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.3.2)练习.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.3)定积分的换元法和分部积分法.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第五章(5.4)反常积分.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第六章(6.1)定积分的元素法.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第六章(6.2)定积分在几何学上的应用.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第六章(6.3.1)背景知识.ppt
- 华中师范大学:《数学分析》课程PPT教学课件(讲稿)第六章(6.3.2)质点连线方向.ppt