复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)09 区间估计和假设检验

区间估计和假设检验 赵耐青 复旦大学卫生统计教研室
区间估计和假设检验 赵耐青 复旦大学卫生统计教研室

内容 区间估计 假设检验 3可信区间与假设检验的关系 4 STATA命令
2 内容 2 假设检验 3 可信区间与假设检验的关系 4 STATA命令 1 区间估计

统计推断 点值估计 参数估计 区间估计 统计推断 假设检验:均数间的比较 比例、率的比较
3 统计推断 点值估计 参数估计 区间估计 统计推断 假设检验:均数间的比较 比例、率的比较 ……

点估计和区间估计 参数估计可以分为点估计和区间估计 令点估计就是估计某个参数为某个数值(如样 本均数,样本率等) 令由于随机抽样存在抽样误差,由于点估计 无法评价抽样误差的大小,而区间估计可 以在95%可信度的尺度上估计参数的范围, 范围越小,说明参数估计的抽样误差就越
4 点估计和区间估计 ❖参数估计可以分为点估计和区间估计 ❖点估计就是估计某个参数为某个数值(如样 本均数,样本率等) ❖由于随机抽样存在抽样误差,由于点估计 无法评价抽样误差的大小,而区间估计可 以在95%可信度的尺度上估计参数的范围, 范围越小,说明参数估计的抽样误差就越 小

总体均数的区间估计 假定资料X1X2…2X近似服从正态分布N(m2a2) 今对于随机抽样而言,计算统计量 1、又少华(n-1分布因此P(tkn)=095 S/ 令基于随机抽样而言和|tk0512成立的概率为095前提下 下-4n2<m=x如空 总体均数的区间估计R502S <<+0g2 今这个区间称为总体均数的95%可信区间
5 总体均数的区间估计 ❖ 假定资料 近似服从正态分布 。 ❖ 对于随机抽样而言,计算统计量 ❖ 因此 ❖ 基于随机抽样而言和 成立的概率为0.95前提下 ❖ 总体均数的区间估计 ❖ 这个区间称为总体均数的95%可信区间 1 2 , , , X X X n 2 N( , ) ( 1) / X t t n S n − = − 分布 Pr(| | ) 0.95 0.05/ 2 Pr(| | ) 0.95 t t = 0.05/ 2 t t = 0.05/ 2 | | t t 0.05/ 2 | | t t 总体均数的区间估计 1 2 , , , X X X n 2 X X X 1 2 , , , n N( , ) ( 1) / X t t n S n − = − 分布 2 X X X 1 2 , , , n N( , ) Pr(| | ) 0.95 0.05/ 2 ( 1) t t = / X t t n S n − = − 分布 2 X X X 1 2 , , , n N( , ) 0.05/ 2 | | t t Pr(| | ) 0.95 0.05/ 2 ( 1) t t = / X t t n S n − = − 分布 2 X X X 1 2 , , , n N( , ) 0.05/ 2 | | t t Pr(| | ) 0.95 0.05/ 2 ( 1) t t = / X t t n S n − = − 分布 2 X X X 1 2 , , , n N( , ) 0.05/ 2 0.05/ 2 t S t S X X n n − + 0.05/ 2 | | t t Pr(| | ) 0.95 0.05/ 2 ( 1) t t = / X t t n S n − = − 分布 2 X X X 1 2 , , , n N( , ) 0.05/ 2 0.05/ 2 t S t S X X n n − + 0.05/ 2 0.05/ 2 t S t S X X n n − + 0.05/ 2 | | t t 0.05/ 2 0.05/ 2 t S t S X X n n − + Pr(| | ) 0.95 0.05/ 2 t t = 0.05/ 2 | | t t 0.05/ 2 0.05/ 2 t S t S X X n n − + ( 1) / X t t n S n − = − 分布 Pr(| | ) 0.95 0.05/ 2 t t = 0.05/ 2 | | t t 0.05/ 2 0.05/ 2 t S t S X X n n − + 1 2 , , , X X X n ( 1) / X t t n S n − = − 分布 Pr(| | ) 0.95 0.05/ 2 t t = 0.05/ 2 | | t t 0.05/ 2 0.05/ 2 t S t S X X n n − + 2 X X X 1 2 , , , n N( , ) ( 1) / X t t n S n − = − 分布 Pr(| | ) 0.95 0.05/ 2 t t = 0.05/ 2 | | t t 0.05/2 0.05/2 0.05/2 0.05/2 / X t S t S t t X S n n n − − − − 0.05/ 2 0.05/ 2 t S t S X X n n − +

总体均数的95%可信区间举例 今例如:在某地区7岁男孩的人群中随机抽样,抽 取200人,测量其身高,得到样本均数为 121cm,样本标准差为54cm,估计该地区7 岁男孩人群的平均身高在什么范围内 0.05/2 1.972×5.3 =121± 200 =121±0.753=(120.247,121.753)cm
6 总体均数的95%可信区间举例 ❖例如:在某地区7岁男孩的人群中随机抽样,抽 取200人,测量其身高,得到样本均数为 121cm,样本标准差为5.4cm,估计该地区7 岁男孩人群的平均身高在什么范围内。 0.05/ 2 1.972 5.3 121 200 121 0.753 (120.247,121.753) t S X n cm = = =

(1-0)×100%可信区间及其意义 今更一般而言,可以计算(1-0)×1000 可信区间,称(1-0)为可信度。 C/2n-1 今可信度的意义:在同一正态总体中随机抽 100个样本,每个样本可以计算一个959 可信区间,平均有95个可信区间包含该总 体的总体均数
7 (1-)100%可信区间及其意义 ❖更一般而言,可以计算(1-) 100% 可信区间,称(1-)为可信度。 ❖可信度的意义:在同一正态总体中随机抽 100个样本,每个样本可以计算一个95% 可信区间,平均有95个可信区间包含该总 体的总体均数。 / 2, 1 n t S X n −

(1-0)×100%可信区间及其意义 今可信度1-0越大,计算可信区间包含总体均数的 正确率就越高,但可信区间的宽度就越大,也就 是估计总体均数的精度就越差 般而言,95%可信区间是兼顾了正确性和估 计精度,对于特殊情况,可以计算90%可信区 间或99%可信区间。 对于随机抽样前而言,随机抽取一个样本量为n 的样本,计算95%可信区间,则该区间将包含 总体均数的概率为95%,不包含其总体均数的 概率为005,这是一个小概率事件,对于一次随 机抽样而言,一般是不会发生的,所以95%可 信区间一般被认为就是总体均数的范围
8 (1-)100%可信区间及其意义 ❖可信度1-越大,计算可信区间包含总体均数的 正确率就越高,但可信区间的宽度就越大,也就 是估计总体均数的精度就越差。 ❖一般而言,95%可信区间是兼顾了正确性和估 计精度,对于特殊情况,可以计算90%可信区 间或99%可信区间。 ❖对于随机抽样前而言,随机抽取一个样本量为n 的样本,计算95%可信区间,则该区间将包含 总体均数的概率为95%,不包含其总体均数的 概率为0.05,这是一个小概率事件,对于一次随 机抽样而言,一般是不会发生的,所以95%可 信区间一般被认为就是总体均数的范围

假设检验( hypothesis testing) 样本均数与总体均数不等或两样本均数不等,有 两种可能: 由抽样误差所致 两者来自不同的总体 假设检验是用来判断样本与样本,样本与总体的差异 是由抽样误差引起还是本质差别造成的统计推断方法
9 假设检验(hypothesis testing) ❖样本均数与总体均数不等或两样本均数不等,有 两种可能: ➢ 由抽样误差所致 ➢ 两者来自不同的总体 假设检验是用来判断样本与样本,样本与总体的差异 是由抽样误差引起还是本质差别造成的统计推断方法

假设检验问题 随机抽样/样本 总体 X H μ=μo 即:抽样误差? 不是抽样误差? 总体 10
10 总体 μ 随机抽样 不是抽样误差? 即:0? X 样本 总体 μ0 =0? 即:抽样误差? 假设检验问题 总体 X 总体 μ0 X 不是抽样误差? 即:0? 总体 μ0 总体 X =0? 即:抽样误差? 不是抽样误差? 即:0? 总体 μ0 总体 X
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)08 参数估计基础——抽样分布.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)07 正态分布.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)06 常用概率分布——poisson分布.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)05 常用概率分布(二项分布).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)04 统计图表.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)03 定性资料的统计描述(分类资料的统计描述).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)02 定量资料的统计描述(计量资料的统计描述).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)01 卫生统计学绪论(卫生统计学基本概况和基本概念).ppt
- 复旦大学:《卫生统计学》课程教学资源(实践课授课课件)Stata软件基本操作和数据分析入门_第6讲 线性相关和回归.pdf
- 复旦大学:《卫生统计学》课程教学资源(实践课授课课件)Stata软件基本操作和数据分析入门_第5讲 多组平均水平的比较.pdf
- 复旦大学:《卫生统计学》课程教学资源(实践课授课课件)Stata软件基本操作和数据分析入门_第4讲 两组计量资料平均水平的统计检验.pdf
- 复旦大学:《卫生统计学》课程教学资源(实践课授课课件)Stata软件基本操作和数据分析入门_第3讲 概率分布和抽样分布.pdf
- 复旦大学:《卫生统计学》课程教学资源(实践课授课课件)Stata软件基本操作和数据分析入门_第2讲 统计描述入门.pdf
- 复旦大学:《卫生统计学》课程教学资源(实践课授课课件)Stata软件基本操作和数据分析入门_第1讲 Stata操作入门.pdf
- 复旦大学:《卫生统计学》课程教学资源_教学试卷(A卷,2013).doc
- 复旦大学:《卫生统计学》课程教学资源(习题)第十七章 多因素回归分析的Stata实现.doc
- 复旦大学:《卫生统计学》课程教学资源(习题)第十六章 析因设计和交叉设计资料分析Stata实现.doc
- 复旦大学:《卫生统计学》课程教学资源(习题)第十五章 诊断试验设计与资料分析Stata实现.doc
- 复旦大学:《卫生统计学》课程教学资源(习题)第十四章 生存分析Stata实现.doc
- 复旦大学:《卫生统计学》课程教学资源(习题)第十三章 单样本与总体比较的统计分析Stata实现.doc
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)10 研究设计入门和实验设计实例.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)11 成组两样本资料的t检验(成组设计两样本均数的比较).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)12 成组两样本资料的秩和检验.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)13 Poisson分布资料的统计检验分析.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)14 完全随机设计的多组资料方差分析比较.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)15 多个样本均数的两两比较.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)16 完全随机设计的多组资料秩和分析(完全随机设计多样本资料秩和检验).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)17 配对t检验和秩和检验(配对资料的t检验和秩和检验).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)18 随机区组设计多样本资料比较(配伍区组设计多样本资料比较).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)19 单样本检验(单样本二项分布).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)20 卡方检验(两组两分类资料检验).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)21 回归分析——直线回归.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)22 相关分析(直线相关).ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)23 生存分析 survival analysis.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)24 调查设计.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)25 实验设计.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)26 寿命表.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)27 数据分析的统计方法选择小结.ppt
- 复旦大学:《卫生统计学》理论课程教学资源(PPT授课课件)28 研究设计与文献评阅要点.ppt
- 复旦大学:《卫生统计学》课程教学资源(试卷习题)01 绪论.doc