北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第3章 微分中值定理与导数的应用 第1节 微分中值定理

第1节 第三章 微分中值定理 费马引理 二、拉格朗日中值定理 三、柯西中值定理 四、泰勒中值定理 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录上页 下页返回 结束
目录 上页 下页 返回 结束 第1节 二、拉格朗日中值定理 三、柯西中值定理 微分中值定理 第三章 四、泰勒中值定理 一、费马引理

一、费马引理 g} ->fx)=0 马,P.de (或2) 证:设Vx0+△x∈U(xo),f(xo+△y)≤f(xo), 则f'(xo)=1im f(xo+△x)-f(xo) X △x-→0 △x f'(xo)≥0(△x→0) →f'(x0)=0 f(xo)s0(△x→0*) 证毕 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 费马 目录 上项 下页返回 结束
目录 上页 下页 返回 结束 一、费马引理 且 存在 (或) 证: 设 则 0 0 费马 证毕 x y O 0 x

二、拉格朗日中值定理 定理1(罗尔定理 y=f(x) y=f(x)满足: (1)在区间[a,b]上连续 (2)在区间(a,b)内可导 a (3)f(a)=f(b) =>在(α,b)内至少存在一点5,使f'()=0 证:因f(x)在[a,b]上连续,故在[a,b]上取得最大值 M和最小值m. 若M=m,则f(x)≡M,x∈[a,b], 因此V5∈(a,b),f'()=0 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录 上项 下页返回 结束
目录 上页 下页 返回 结束 定理1(罗尔定理) 满足: (1) 在区间 [a , b] 上连续 (2) 在区间 (a , b) 内可导 (3) f ( a ) = f ( b ) 使 f ( ) 0. 证: 故在[ a , b ]上取得最大值 M 和最小值 m . 若 M = m , 则 因此 在( a , b ) 内至少存在一点 x y a b y f (x) O 二、拉格朗日中值定理

若M>m,则M和m中至少有一个与端点值不等 不妨设M≠f(a),则至少存在一点5∈(a,b),使 (5)=M,则由费马引理得∫'(5)=0. y=f(x) 注意: 1)定理条件不全具备时,结论不一定 ag 成立.例如 fo)= X, 0≤x<1 f(x)=x f(x)=x 0, x=1 x∈[-1,1] x∈[0,1] X 在[0,1]不连续 在0,1)不可导 f(0)≠f(1) BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录上页 下页返回 结束
目录 上页 下页 返回 结束 若 M > m , 则 M 和 m 中至少有一个与端点值不等, 不妨设 则至少存在一点 使 f ( ) 0. 注意: 1) 定理条件不全具备时, 结论不一定 成立. 则由费马引理得 1 x y O 1 x y 1 O 1 x y O x y a b y f (x) O 例如

2)定理条件只是充分的.本定理可推广为 y=f(x)在(a,b)内可导,且 lim f(x)=lim f(x) x→a x->b > 在(a,b)内至少存在一点5,使f'()=0. f(a), x=a 证明提示:设四=的。X=b a<x<b 证Fx)在[a,b]上满足罗尔定理 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录 上页 下页 返回 结束
目录 上页 下页 返回 结束 使 2) 定理条件只是充分的. 本定理可推广为 在 ( a , b ) 内可导, 且 lim f (x) x a lim f (x) x b 在( a , b ) 内至少存在一点 证明提示: 设 证 F(x) 在 [a , b] 上满足罗尔定理

定理2(拉格朗日中值定理) y=f(x) y=f(x)满足: (b)-f(a) b-a (1)在区间[a,b]上连续 a飞 x (2)在区间(a,b)内可导 至少存在一点5∈(a,b),使f(5)= > f(b)-f(a) 证:问题转化为证f"() f(b)-f(a)=0 b-a b-a 作辅助函数 0(x)=f(x)- f(b)-f(a) b-a 显然,p(x)在[a,b]上连续,在(a,b)内可导,且 Eagrange p(a) bf(a)-afb)=p(b),由罗尔定理知至少存在一点 b-a 5∈(a,b),使p'()=0,即定理结论成立.证毕 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 拉氏 目录上页 下页 返回
目录 上页 下页 返回 结束 定理2(拉格朗日中值定理) ( ) (1) 在区间 [ a , b ] 上连续 满足: (2) 在区间 ( a , b ) 内可导 至少存在一点 使 . ( ) ( ) ( ) b a f b f a f 思路: 利用逆向思维找出一个满足罗尔定理条件的函数 作辅助函数 显然 , 在[a, b] 上连续, 在(a, b)内可导, 且 证: 问题转化为证 (x) f (x) x b a f b f a ( ) ( ) (a) 由罗尔定理知至少存在一点 即定理结论成立 . (b), b a b f a a f b ( ) ( ) 拉氏 0 ( ) ( ) ( ) b a f b f a f 证毕 x y a b y f (x) O y x b a f b f a ( ) ( )

拉格朗日中值定理的有限增量形式: 令a=x0,b=x0+△x,则 △y=f'(x+B△x)△x(0<B<1) 推论1若函数f(x)在区间I上满足f"(x)=0,则f(x) 在1上必为常数 证:在7上任取两点x1,x2(x1<x2),在[x,x2]上用拉 格朗日中值公式,得 f(x2)-f(x)=f'(5)(x2-x)=0(1<5<x2) f(x2)=f(x) 由x1,x2的任意性知,f(x)在I上为常数 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录 返回 结束
目录 上页 下页 返回 结束 , ( , ) ( ) ( ) ( ) a b b a f b f a f 拉格朗日中值定理的有限增量形式: 推论1 若函数 在区间 I 上满足 则 在 I 上必为常数. 证: 在 I 上任取两点 格朗日中值公式 , 得 0 由 的任意性知, 在 I 上为常数 . ( ) (0 1) y f x0 x x 令 则

推论2如果在区间(a,b)内恒有 f(x)=g'(x),)=g(x)+C. 证:对任意 x∈(a,b),[f(x)-g(x]'=f'(x)-g'(x)=0 由推论1知 f(x)-g(x)=C,f(x)=g(x)+C 说明导函数相等的两个函数相差一个常数, BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录上页 下页返回 结束
目录 上页 下页 返回 结束 推论2 如果在区间(a,b)内恒有 f ′(x)=g′(x),则f(x)=g(x)+C. 证: 对任意 由推论1知 说明导函数相等的两个函数相差一个常数

例3.1.4证明恒等式arcsin x+arccosx= 2 x∈[-1,1] 证:设f(x)=arcsinx+arccosx,则在(-l,I)上 f'(x)= 三 1-x21-x2 由推论可知f(x)=arcsinx+arccosx=C(常数) 兀 令x=0,得C= 2 又)-号 故所证等式在定义域[-1,1]上成立 经验:欲证x∈I时f(x)=C,只需证在I上∫'(x)≡0, 且3x,∈I,使f(x)=C0 兀 自证:arctanx+arccotx=,x∈(-o,+o) 2 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录 下页 返回 结束
目录 上页 下页 返回 结束 例3.1.4 证明恒等式 证: 设 由推论可知 (常数) 令 x = 0 , 得 又 故所证等式在定义域 上成立. 自证: , x(, ) 2 π arctan x arccot x 经验: 欲证 x I 时 ( ) , C0 f x 只需证在 I 上 f (x) 0, , 0 且 x I ( ) . 0 C0 使 f x

例3.1.5证明不等式 0) 1十x 证:设f(t)=ln(1+t),则f(t)在[0,x]上满足拉格朗日 中值定理条件,因此应有 f(x)-f(0)=f'(5)(x-0),00) 1+x BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS 目录上页下页 、返回结束
目录 上页 下页 返回 结束 例3.1.5 证明不等式 证: 设 f (t) ln(1 t) , 中值定理条件, 即 因为 故 ln(1 ) ( 0). 1 x x x x x 因此应有
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第2章 导数与微分 第6节 函数的微分.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第2章 导数与微分 第5节 隐函数的导数.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第2章 导数与微分 第4节 高阶导数.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第2章 导数与微分 第3节 复合函数的求导法则.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第2章 导数与微分 第2节 导数的四则运算法则.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第2章 导数与微分 第1节 导数的概念.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第9节 闭区间上连续函数的性质.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第8节 函数的连续性.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第7节 无穷小的比较.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第5节 极限的运算法则.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第4节 无穷小与无穷大.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第3节 函数的极限.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第2节 数列的极限.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续 第1节 初等函数.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第1章 函数、极限与连续(引言).pdf
- 银川能源学院:《高等数学》课程教学资源(电子教案)第十章 曲线积分和曲面积分.pdf
- 银川能源学院:《高等数学》课程教学资源(电子教案)第十二章 常微分方程.pdf
- 银川能源学院:《高等数学》课程教学资源(电子教案)第十一章 无穷级数.pdf
- 银川能源学院:《高等数学》课程教学资源(电子教案)第六章 空间解析几何与向量代数.pdf
- 银川能源学院:《高等数学》课程教学资源(电子教案)第八章 多元函数微分法及其应用.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第3章 微分中值定理与导数的应用 第2节 洛必达法则.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第3章 微分中值定理与导数的应用 第3节 函数的单调性和曲线的凹凸性.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第3章 微分中值定理与导数的应用 第4节 函数的极值与最大值、最小值问题.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第3章 微分中值定理与导数的应用 第5节 函数图形的描绘.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第3章 微分中值定理与导数的应用 第6节 弧微分与曲率.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第4章 不定积分 第1节 不定积分的概念与性质.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第4章 不定积分 第2节 第一类换元积分法.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第4章 不定积分 第3节 第二类换元积分法.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第4章 不定积分 第4节 分部积分法.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第4章 不定积分 第5节 有理函数和可化为有理函数的积分.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第1节 定积分的概念.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第2节 定积分的基本性质.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第3节 微积分基本公式.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第4节 定积分的换元积分法和分部积分法.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第5节 广义积分.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第6节 定积分在几何学上的应用.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第5章 定积分 第7节 定积分的物理应用.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第6章 空间解析几何 第1节 预备知识.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第6章 空间解析几何 第2节 向量的向量积.pdf
- 北京邮电大学出版社:21世纪高等学校规划教材《高等数学》课程教学资源(课件讲稿)第6章 空间解析几何 第3节 平面及其方程.pdf