西安电子科技大学:《博弈论 GAME THEORY》课程教学资源(PPT课件讲稿)完全信息静态博弈 Static Games of Complete Information(主讲:栾浩)

博弈论( GAME THEORY) LECTURE 1 TomH.Luan(栾浩) tom.luan@xidian.edu.cn CES, Xidian University
博弈论 (GAME THEORY) LECTURE 1 Tom H. Luan (栾浩) tom.luan@xidian.edu.cn CES, Xidian University

Outline of static games of complete Information ■ ntroduction to games Normal-form(or strategic-form) representation a Iterated elimination of strictly dominated strategIes Nash equilibrium Applications of Nash equilibrium ■M× ed strategy Nash equilibrium
4 Outline of Static Games of Complete Information ◼ Introduction to games ◼ Normal-form (or strategic-form) representation ◼ Iterated elimination of strictly dominated strategies ◼ Nash equilibrium ◼ Applications of Nash equilibrium ◼ Mixed strategy Nash equilibrium

什么是博弈论? 什么是博弈?任何需要顾及到个体利益的决策过程,都是博弈 ■博弈的特点 ■分布式:一般没有中央控制单元,博弈者各自为政 多成员:至少包含两名或以上博弈者 相互联系:一名博弈者的决定,可能会影响其他博弈者 ■对完整博弈过程的一种逻辑的分析 ■博弈过程:如大国博弈(贸易出口),或个人博弈(股票投资 种逻辑:没个博弈者( Game Player)都是理性的获取其最 大利益 ■分析: 如何制定博弈规则,从而形成最佳的系统(如联合国机制)? 每个博弈者,应当如何制定对其最优的策略,从而最大化其收益?
什么是博弈论? ◼ 什么是博弈?任何需要顾及到个体利益的决策过程,都是博弈 ◼ 博弈的特点: ◼ 分布式:一般没有中央控制单元,博弈者各自为政 ◼ 多成员:至少包含两名或以上博弈者 ◼ 相互联系:一名博弈者的决定,可能会影响其他博弈者 ◼ 对完整博弈过程的一种逻辑的分析 ◼ 博弈过程:如大国博弈(贸易出口),或个人博弈(股票投资 ) ◼ 一种逻辑:没个博弈者(Game Player)都是理性的获取其最 大利益 ◼ 分析: ◼ 如何制定博弈规则,从而形成最佳的系统(如联合国机制)? ◼ 每个博弈者,应当如何制定对其最优的策略,从而最大化其收益? 5

稳定是关键! ■什么是博弈?任何需要顾及到个体利益的决策过程, 都是博弈 ■博弈的特点: ■分布式:一般没有中央控制单元,博弈者各自为政 多成员:至少包含两名或以上博弈者 ■相互联系:一名博弈者的决定,可能会影响其他博弈者 ■基础是稳定(纳什均衡( Nash equilibrium)) ■目标是利益最大化( Pareto Optimal)
稳定是关键! ◼ 什么是博弈?任何需要顾及到个体利益的决策过程, 都是博弈 ◼ 博弈的特点: ◼ 分布式:一般没有中央控制单元,博弈者各自为政 ◼ 多成员:至少包含两名或以上博弈者 ◼ 相互联系:一名博弈者的决定,可能会影响其他博弈者 ◼ 基础是稳定(纳什均衡(Nash Equilibrium)) ◼ 目标是利益最大化( Pareto Optimal ) 6

What is game theory We focus on games where There are at least two rational players Each player has more than one choices The outcome depends on the strategies chosen by all players; there is strategic interaction Strategic externality EXample: Six people go to a restaurant Each person pays his/her own meal -a simple decision problem Before the meal, every person agrees to split the bill evenly among them-a game
7 What is game theory? ◼ We focus on games where: ➢ There are at least two rational players ➢ Each player has more than one choices ➢ The outcome depends on the strategies chosen by all players; there is strategic interaction ➢ Strategic externality ◼ Example: Six people go to a restaurant. ➢ Each person pays his/her own meal – a simple decision problem ➢ Before the meal, every person agrees to split the bill evenly among them – a game

a Beautiful mind ■约翰纳什,生于1928年6月13日。著名经济学家、博弈论创始人 ,因对博弈论和经济学产生了重大影响,而获得1994年诺贝尔经 济学奖。2015年5月23日,于美国新泽西州逝世 ■1950年于其仅27页的博士论文中提出重要发现,这就是后来被称 为“纳什均衡”的博弈理论 USSELL CROWE ED HARRIS A MINDL 1+h
A Beautiful Mind ◼ 约翰·纳什,生于1928年6月13日。著名经济学家、博弈论创始人 ,因对博弈论和经济学产生了重大影响,而获得1994年诺贝尔经 济学奖。2015年5月23日,于美国新泽西州逝世 ◼ 1950年于其仅27页的博士论文中提出重要发现,这就是后来被称 为“纳什均衡”的博弈理论 8

What is game theory Game theory is a formal way to analyze strategic interaction among a group of rational players(or agents) a Game theory has applications >Economics/Politics/Sociology /Law/Biology >The double helixand unifying tool for social scientists
9 What is game theory? ◼ Game theory is a formal way to analyze strategic interaction among a group of rational players (or agents) ◼ Game theory has applications ➢ Economics/Politics/Sociology/Law/Biology ➢ The “double helix” and unifying tool for social scientists

Classic Example: Prisoners Dilemma Two suspects held in separate cells are charged with a major crime. However, there is not enough evidence Both suspects are told the following policy If neither confesses then both will be convicted of a minor offense and sentenced to one month in jail If both confess then both will be sentenced to jail for six months y If one confesses but the other does not then the confessor will be released but the other will be sentenced to jail for nine months Prisoner 2 Mum Confess Mum 1 1-9 Prisoner 1 Confess 0 9|-6 6 10
10 Classic Example: Prisoners’ Dilemma ◼ Two suspects held in separate cells are charged with a major crime. However, there is not enough evidence. ◼ Both suspects are told the following policy: ➢ If neither confesses then both will be convicted of a minor offense and sentenced to one month in jail. ➢ If both confess then both will be sentenced to jail for six months. ➢ If one confesses but the other does not, then the confessor will be released but the other will be sentenced to jail for nine months. -1 , -1 -9 , 0 0 , -9 -6 , -6 Prisoner 1 Prisoner 2 Confess Mum Confess Mum

Example: The battle of the sexes At the separate workplaces, chris and pat must choose to attend either an opera or a prize fight in the evening Both Chris and Pat know the following Both would like to spend the evening together But Chris prefers the opera Pat prefers the prize fight ■Non- zero-sum game Opera Prize Fight Opera 1|0 0 Chris 20 Prize Fight 01 2
11 Example: The battle of the sexes ◼ At the separate workplaces, Chris and Pat must choose to attend either an opera or a prize fight in the evening. ◼ Both Chris and Pat know the following: ➢ Both would like to spend the evening together. ➢ But Chris prefers the opera. ➢ Pat prefers the prize fight. ◼ Non-zero-sum game 2 , 1 0 , 0 0 , 0 1 , 2 Chris Pat Prize Fight Opera Prize Fight Opera

Example: Matching pennies each of the two players has a penny Two players must simultaneously choose whether to show the head or the tail Both players know the following rules If two pennies match(both heads or both tails)then player 2 wins player 1's penny > Otherwise, player 1 wins player 2s penny Zero-sum game: no way for collaboration layer 2 Head Head 1 11 1 Player 1 Tail 1 1|-1 1
12 Example: Matching pennies ◼ Each of the two players has a penny. ◼ Two players must simultaneously choose whether to show the Head or the Tail. ◼ Both players know the following rules: ➢ If two pennies match (both heads or both tails) then player 2 wins player 1’s penny. ➢ Otherwise, player 1 wins player 2’s penny. ➢ Zero-sum game: no way for collaboration -1 , 1 1 , -1 1 , -1 -1 , 1 Player 1 Player 2 Tail Head Tail Head
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 复杂网络的社团结构分析(PPT讲稿)Community structure in complex networks(中国科学院:章祥荪).ppt
- 《高等数学》课程教学资源(PPT讲稿)定积分讲稿.ppt
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第二章 随机变量及其分布.pptx
- 《高等代数》课程教学资源(PPT课件讲稿)行列式按行(列)展开.ppt
- 《运筹学》课程教学资源(PPT课件讲稿)第三章 线性规划.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)关系、函数及其运算.pptx
- 《离散数学》课程教学大纲.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 中国医科大学附属第一医院:动脉粥样硬化和冠状动脉粥样硬化性心脏病(PPT讲稿)动脉粥样硬化(主讲:张月兰).ppt
- 《数学物理方法》课程教学资源(PPT课件讲稿)第二章 解析函数(Analytic function).ppt
- 《运筹学》课程教学资源(PPT课件讲稿)第三章 对偶理论及灵敏度分析.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第六章 群论.pptx
- 新乡学院:《线性代数》课程教学大纲(A1).pdf
- 《高等数学》课程教学资源(PPT课件)第六章 定积分的应用 第二节 定积分在几何学上的应用.ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第二章 初等模型.ppt
- 《数学建模》课程教学资源(PPT讲稿)Chapter 11 非线性规划 Nonlinear Programming.ppt
- 计算几何教程(PPT课件讲稿)Computational Geometry.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——集合及其运算.pptx
- 《离散数学》课程教学资源(PPT课件讲稿)第1章 命题逻辑.ppt
- 新乡学院:《复变函数论》课程教学大纲.pdf
- 《线性代数》课程教学资源(PPT课件讲稿)第四章 向量空间.ppt
- 《试验设计与数据处理》课程教学资源:课程介绍.pdf
- 信息工程大学:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第十三章 动态规划方法.pps
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第一部分 数理逻辑 第一章 命题逻辑(主讲:肖明军).ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)图论(树).pptx
- 清华大学出版社:《数学建模》课程教材PPT教学课件(线性规划与目标规划)第3章 对偶理论和灵敏度分析.ppt
- 白城师范学院:《概率论与数理统计》课程教学资源(PPT课件讲稿)第六章 参数估计.ppt
- 数学软件 Mathematica(PPT讲稿)Mathematica 使用入门.ppt
- 同济大学:《数学建模》课程教学资源(PPT课件讲稿)微分方程模型(主讲:关晓飞).ppt
- 长春理工大学:《线性代数》课程考试大纲.doc
- 兰州大学:《高等数学》课程PPT教学课件(讲稿)第一章 函数与极限 第一节 函数.ppt
- 信息工程大学:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第六章 层次分析方法(韩中庚、杜剑平).pps
- 《数理逻辑》课程教学资源(PPT课件讲稿)第1章 命题逻辑的基本概念.ppt
- 《概率论》课程教学资源(教案讲义)课程介绍.doc
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)集合论.ppt
- 《运筹学》课程电子教案(PPT课件讲稿)第四章 运输问题.ppt
- 山东大学:《概率统计》课程PPT教学课件(讲稿)假设检验的基本概念、正态总体的参数检验(主讲:叶宏).ppt
- 山东大学:《数学建模》课程PPT教学课件(讲稿)Chapter 17 分支定界.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第八章 微分方程(习题课).ppt
- 《工程优化设计中的数学方法》课程教学资源(PPT课件讲稿)第三章 常用的一维搜索方法.ppt