《数学建模》课程教学资源(PPT讲稿)Chapter 11 非线性规划 Nonlinear Programming

Chapter 11 Nonlinear programming to accompany Operations Research Applications and algorithms 4th edition by Wayne L. winston Copyright(c) 2004 Brooks/Cole, a division of Thomson Learning, Inc
Chapter 11 Nonlinear Programming to accompany Operations Research: Applications and Algorithms 4th edition by Wayne L. Winston Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc

11. 1 Review of differential calculus ■ The equation lim f(x)=c x→a means that as x gets closer to a(but not equal to a, the value of f(x gets arbitrarily close to C A function f(x )is continuous at a point if lim f()=f(a x→a If f(x)is not continuous at x=a, we say that f(x) is discontinuous or has a discontinuity at a
2 11.1 Review of Differential Calculus ◼ The equation means that as x gets closer to a (but not equal to a), the value of f(x) gets arbitrarily close to c. ◼ A function f(x) is continuous at a point if If f(x) is not continuous at x=a, we say that f(x) is discontinuous (or has a discontinuity) at a. f x c x a = → lim ( ) lim f (x) f (a) x a = →

■ The derivative of a function f(×)atX=a (written f(a] is defined to be lim f(a+Ax)-f(a Ax→>0 △x N-th order Taylor series expansion f(a+h)=f(a)+ fo()h+fo+(p),nl (n+1 ■ The partial derivative of(1,X2…Xn)with respect to the variable xi is written where af f(x1,x1+△x f(x1…,x1…xn) ax Ar 0 △x
3 ◼ The derivative of a function f(x) at x = a (written f’(a)] is defined to be ◼ N-th order Taylor series expansion ◼ The partial derivative of f(x1, x2,…xn) with respect to the variable xi is written x f a x f a x + − → ( ) ( ) lim 0 1 ( 1) 1 ( ) ( 1)! ( ) ! ( ) ( ) ( ) + = + = + + + = + n i n i n i i h n h f p i f a f a h f a i i i n i n x i i x f x x x x f x x x x f x f i + − = → ( ,..., ,..., ) ( ,..., ,... ) lim , where 1 1 0

11.2 Introductory Concepts a general nonlinear programming problem (NLp can be expressed as follows Find the values of decision variables X1 个2rn that maX( or mIn)z=f(X1,X2灬…,Xn) s,t g1(X1,X2x…,Xn)(≤,=,Or≥)b1 st.g2(X1,X2…,X)(≤,=,or≥)b2 9m(X1,X2…,Xn)(≤,=,Or≥)bn
4 11.2 Introductory Concepts ◼ A general nonlinear programming problem (NLP) can be expressed as follows: Find the values of decision variables x1 , x2 ,…xn that max (or min) z = f(x1, x2,…,xn) s.t. g1(x1, x2,…,xn) (≤, =, or ≥)b1 s.t. g2(x1, x2,…,xn) (≤, =, or ≥)b2 . . . gm(x1, x2,…,xn) (≤, =, or ≥)bm

■ As in linear programming f(1,X2…,X) is the NLP's objective function, and g, X1 X2i Xn) (≤,=,or≥)b1…gn(xX1,X2…,Xn)(≤,=,Or≥)bm are the nlps constraints An nlp with no constraints is an unconstrained nlp The feasible region for nLp above is the set of points x1 X2ruXn that satisfy the m constraints in the nlp. a point in the feasible region is a feasible point and a point that is not in the feasible region is an infeasible point
5 ◼ As in linear programming f(x1 , x2 ,…,xn) is the NLP’s objective function, and g1(x1 , x2 ,…,xn) (≤, =, or ≥)b1 ,…gm(x1 , x2 ,…,xn) (≤, =, or ≥)bm are the NLP’s constraints. ◼ An NLP with no constraints is an unconstrained NLP. ◼ The feasible region for NLP above is the set of points (x1 , x2 ,…,xn) that satisfy the m constraints in the NLP. A point in the feasible region is a feasible point, and a point that is not in the feasible region is an infeasible point

If the nlp is a maximization problem then any point x in the feasible region for which f(x)> f(x holds true for all points x in the feasible region is an optimal solution to the NLp NLPs can be solved with lingo Even if the feasible region for an nlp is a convex set he optimal solution need not be a extreme point of the NLps feasible region For any NLP (maximization, a feasible point X (X1, X2,)is a local maximum if fo,,n) sufficiently small e, any feasible point X (X1,X2Xn) having|×1-×l∈(=1,2,…, satisfies f(×)≥f(x)
6 ◼ If the NLP is a maximization problem then any point in the feasible region for which f( ) ≥ f(x) holds true for all points x in the feasible region is an optimal solution to the NLP. ◼ NLPs can be solved with LINGO. ◼ Even if the feasible region for an NLP is a convex set, he optimal solution need not be a extreme point of the NLP’s feasible region. ◼ For any NLP (maximization), a feasible point x = (x1 ,x2 ,…,xn) is a local maximum if for sufficiently small , any feasible point x’ = (x’1 ,x’2 ,…,x’n) having | x1–x’1|< (i = 1,2,…,n) satisfies f(x)≥f(x’). x x

Example 11: Tire Production Firerock produces rubber used for tires by combining three ingredients: rubber, oil, and carbon black, the costs for each are given The rubber used in automobile tires must have d a hardness of between 25 and 35 d an elasticity of at 16 aa tensile strength of at least 12 To manufacture a set of four automobile tires 100 pounds of product is needed the rubber to make a set of tires must contain between 25 and 60 pounds of rubber and at least 50 pounds of carbon black
7 Example 11: Tire Production ◼ Firerock produces rubber used for tires by combining three ingredients: rubber, oil, and carbon black. The costs for each are given. ◼ The rubber used in automobile tires must have a hardness of between 25 and 35 an elasticity of at 16 a tensile strength of at least 12 ◼ To manufacture a set of four automobile tires, 100 pounds of product is needed. ◼ The rubber to make a set of tires must contain between 25 and 60 pounds of rubber and at least 50 pounds of carbon black

Ex 11-continued ■ Define R= pounds of rubber in mixture used to produce four tires 0= pounds of oil in mixture used to produce four tires C= pounds of carbon black used to produce four tires Statistical analysis has shown that the hardness elasticity and tensile stregth of 100-pound mixture of rubber, oil, and carbon black is Tensile strength= 12.5-.10(0)-.001(0)2 Elasticity=17-+.35R.04(O)-.002(O)2 Hardness=34+.10R+.06(O)-3(C+.001(R)(O)+.005(0)2+.001C2 formulate the nlp whose solution will tell firerock how to minimize the cost of producing the rubber product needed to manufacture a set of automobile tires
8 Ex. 11 - continued ◼ Define: R = pounds of rubber in mixture used to produce four tires O = pounds of oil in mixture used to produce four tires C = pounds of carbon black used to produce four tires ◼ Statistical analysis has shown that the hardness, elasticity, and tensile strnegth of a 100-pound mixture of rubber, oil, and carbon black is Tensile strength = 12.5 - .10(O) - .001(O) 2 Elasticity = 17 - + .35R .04(O) - .002(O) 2 Hardness = 34 + .10R + .06(O) -.3(C) + .001(R)(O) +.005(O) 2+.001C2 ◼ Formulate the NLP whose solution will tell Firerock how to minimize the cost of producing the rubber product needed to manufacture a set of automobile tires

Example 11: Solution ■ After defining ts= Tensile strength E= Elasticity H= Hardness of mixture the Lingo program gives the correct formulation
9 Example 11: Solution ◼ After defining TS = Tensile Strength E = Elasticity H = Hardness of mixture the LINGO program gives the correct formulation

It is easy to use the Excel solver to solve NLPs The process is similar to a linear model For NLPs having multiple local optimal solutions the solver may fail to find the optimal solution because it may pick a local extremum that is not a global extremum. 10
10 ◼ It is easy to use the Excel Solver to solve NLPs. ◼ The process is similar to a linear model. ◼ For NLPs having multiple local optimal solutions, the Solver may fail to find the optimal solution because it may pick a local extremum that is not a global extremum
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 计算几何教程(PPT课件讲稿)Computational Geometry.pptx
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——集合及其运算.pptx
- 《离散数学》课程教学资源(PPT课件讲稿)第1章 命题逻辑.ppt
- 新乡学院:《复变函数论》课程教学大纲.pdf
- 新乡学院数学与信息科学学院:《矩阵分析》课程教学资源(教学大纲).pdf
- 《高等数学》课程教学资源(PPT课件)第十一章 曲线积分与曲面积分第三节 格林公式及其应用.ppt
- 《数学模型》课程教学资源(PPT课件讲稿)第十一章 博弈模型.ppt
- 上海中医药大学:《高等数学》课程教学资源(PPT课件讲稿)第五章 定积分及其应用.ppt
- 《幾何原本》的五大公設(PPT讲稿)几何原本的五大公设.ppt
- 苏州市教育科学研究院:基于文化观视角的数学教育的追求(PPT讲稿).ppt
- 《计算数学》课程教学资源(PPT课件讲稿)第七章 非负矩阵.ppt
- 清华大学出版社:《数学建模》课程教材PPT教学课件(线性规划与目标规划)第5章 目标规划.ppt
- 《复变函数与积分变换》课程教学大纲.pdf
- 《微积分》课程教学资源(PPT讲稿)Limits Involving Infinity; Asymptotes of Graphs.ppt
- 新乡学院:《泛函分析》课程教学资源_教学大纲.pdf
- 《概率论与数理统计》课程教学资源:教学大纲.pdf
- 信息工程学院:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第十四章 排队论方法(韩中庚).pps
- 《线性代数》课程教学资源(PPT课件讲稿)知识点例题讲解(行列式、矩阵的概念及运算、可逆矩阵的概念、逆矩阵的性质、线性相关性的概念、方阵的特征值与特征向量).ppt
- 《微积分》课程教学资源(PPT讲稿)微积分选讲(中国科学技术大学:宣本金).ppt
- 同济大学:线性模型(PPT课件讲稿)Linear Model.pptx
- 《数学建模》课程教学资源(PPT课件讲稿)第二章 初等模型.ppt
- 《高等数学》课程教学资源(PPT课件)第六章 定积分的应用 第二节 定积分在几何学上的应用.ppt
- 新乡学院:《线性代数》课程教学大纲(A1).pdf
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第六章 群论.pptx
- 《运筹学》课程教学资源(PPT课件讲稿)第三章 对偶理论及灵敏度分析.ppt
- 《数学物理方法》课程教学资源(PPT课件讲稿)第二章 解析函数(Analytic function).ppt
- 中国医科大学附属第一医院:动脉粥样硬化和冠状动脉粥样硬化性心脏病(PPT讲稿)动脉粥样硬化(主讲:张月兰).ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)Lecture 09 计数.pptx
- 《离散数学》课程教学大纲.pdf
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)关系、函数及其运算.pptx
- 《运筹学》课程教学资源(PPT课件讲稿)第三章 线性规划.ppt
- 《高等代数》课程教学资源(PPT课件讲稿)行列式按行(列)展开.ppt
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第二章 随机变量及其分布.pptx
- 《高等数学》课程教学资源(PPT讲稿)定积分讲稿.ppt
- 复杂网络的社团结构分析(PPT讲稿)Community structure in complex networks(中国科学院:章祥荪).ppt
- 西安电子科技大学:《博弈论 GAME THEORY》课程教学资源(PPT课件讲稿)完全信息静态博弈 Static Games of Complete Information(主讲:栾浩).ppt
- 《线性代数》课程教学资源(PPT课件讲稿)第四章 向量空间.ppt
- 《试验设计与数据处理》课程教学资源:课程介绍.pdf
- 信息工程大学:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第十三章 动态规划方法.pps
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第一部分 数理逻辑 第一章 命题逻辑(主讲:肖明军).ppt