同济大学:线性模型(PPT课件讲稿)Linear Model

near model ING SHEN SSE TONGJIUNIVERSITY SEP.2016
Linear Model Y I NG SH EN SSE, TO NG JI UNI VERSITY SEP. 2 0 1 6

The basic form of the linear model Given a samplex=(i,x2,,x d)' with d attributes The linear model tries to a learn a prediction function using a linear combination of all attributes, i e f(r)=Wix,+W2x2+.+Waxd tb The vector form of the function is f(=w'x+ b Where w=(W1,W2,…,wd Once w and d have been learned from samples, f will be determined For example 好瓜=02*x色泽+0.5*x根蒂+0.3*x敲声+ 2/3/2021 PATTERN RECOGNITION
The basic form of the linear model Given a sample 𝒙 = 𝑥1 , 𝑥2 , … , 𝑥𝑑 𝑇with d attributes The linear model tries to a learn a prediction function using a linear combination of all attributes, i.e. 𝑓 𝒙 = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑑𝑥𝑑 + 𝑏 The vector form of the function is 𝑓 𝒙 = 𝒘𝑇𝒙 + 𝑏 where 𝒘 = 𝑤1 , 𝑤2 , … , 𝑤𝑑 𝑇 Once w and d have been learned from samples, f will be determined. For example 2/3/2021 PATTERN RECOGNITION 2 𝑓好瓜 = 0.2 ∗ 𝑥色泽 + 0.5 ∗ 𝑥根蒂 + 0.3 ∗ 𝑥敲声 + 1

near regression Given a dataset=(1, yi,(x2,y2),,(mmbx (i1, xi2,u, Mid), the task of a linear regression is to learn a linear model which can predict a value for a new samplex' that close to its true value y When d=1, i=xi 400}0 Hours Spent Studying 1014 4 1222 Math SAT 390580650730410530600790350400590 Sc core 2/3/2021 PATTERN RECOGNITION
Linear regression Given a dataset 𝐷 = 𝒙1 , 𝑦1 , 𝒙2 , 𝑦2 , … , 𝒙𝑚, 𝑦𝑚 ; 𝒙𝑖 = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑 𝑇 , the task of a linear regression is to learn a linear model which can predict a value for a new sample x' that close to its true value y'. When 𝑑 = 1, 𝒙𝑖 = 𝑥𝑖 2/3/2021 PATTERN RECOGNITION 3 Hours Spent Studying 4 9 10 14 4 7 12 22 1 3 8 Math SAT Score 390 580 650 730 410 530 600 790 350 400 590

near regression We will learn a linear regression model f(i=wxi+b, such that f(xi=y How do we determine w and 6? >600 2/3/2021 PATTERN RECOGNITION
Linear regression We will learn a linear regression model 𝑓 𝑥𝑖 = 𝑤𝑥𝑖 + 𝑏, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥𝑖 ) ≅ 𝑦𝑖 How do we determine w and b? 2/3/2021 PATTERN RECOGNITION 4

near regression Mean squared error(Mse) is a commonly used performance measure m MSE We want to minimize MSe between f(xi)and y (w*, b*)=arg min)((xi-yi (w,b) m = arg min>(i-wxi-b (w,b) 1 2/3/2021 PATTERN RECOGNITION
Linear regression Mean squared error (MSE) is a commonly used performance measure: We want to minimize MSE between f(xi ) and yi : 2/3/2021 PATTERN RECOGNITION 5 𝑀𝑆𝐸 = 1 𝑚 𝑖=1 𝑚 𝑦𝑖 ′ − 𝑦𝑖 2 𝑤 ∗ , 𝑏 ∗ = arg min (𝑤,𝑏) 𝑖=1 𝑚 𝑓 𝑥𝑖 − 𝑦𝑖 2 = arg min (𝑤,𝑏) 𝑖=1 𝑚 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 2

near regression The method of determining the fitting model based on msE is called the least square method In linear regression problem the least square method aims to find a line such that the sum of distances of all the samples to it is the smallest >600 2/3/2021 PATTERN RECOGNITION
Linear regression The method of determining the fitting model based on MSE is called the least square method In linear regression problem, the least square method aims to find a line such that the sum of distances of all the samples to it is the smallest. 2/3/2021 PATTERN RECOGNITION 6

Pre-requisite A stationary point of a differentiable function of one variable is a point of the domain of the function where the derivative is zero Single-variable function f(x)is differentiable in(a, b). At xo 0 x Ix Two-variables function f(x, y) is differentiable in its domain. At(xo, yo), dx 0, 00 yoyo 2/3/2021 PATTERN RECOGNITION
Pre-requisite A stationary point of a differentiable function of one variable is a point of the domain of the function where the derivative is zero Single-variable function: f(x) is differentiable in (a, b). At x0 , Two-variables function: f(x, y) is differentiable in its domain. At (x0 , y0 ), 2/3/2021 PATTERN RECOGNITION 7 𝑑𝑓 𝑑𝑥 ቚ 𝑥0 = 0 𝑑𝑓 𝑑𝑥 ቚ 𝑥0,𝑦0 = 0, 𝑑𝑓 𝑑𝑦 ቚ 𝑥0,𝑦0 = 0

Pre-requisite In general case, if xo is a stationary point of f(x),x E RiXI df df\=0,…axn df axiNo dx2xo Proposition Let f be a differentiable function of n variables defined on the convex set s, and let xo be in the interior of s. if f is convex then xo is a global minimizer of fin S if and only if it is a stationary point of f( df e·dx kxo =0 for i= l 9() Convex Concave 2/3/2021 PATTERN RECOGNITION
Pre-requisite In general case, if x0 is a stationary point of f(x), 𝒙 ∈ ℝ 𝑛×1 Proposition: Let f be a differentiable function of n variables defined on the convex set S, and let x0 be in the interior of S. If f is convex then x0 is a global minimizer of f in S if and only if it is a stationary point of f (i.e. 𝑑𝑓 𝑑𝑥𝑖 ȁ𝒙0 = 0 for i = 1, ..., n). 2/3/2021 PATTERN RECOGNITION 8 𝑑𝑓 𝑑𝑥1 ቚ 𝒙0 = 0, 𝑑𝑓 𝑑𝑥2 ቚ 𝒙0 = 0,… , 𝑑𝑓 𝑑𝑥𝑛 ቚ 𝒙0 = 0

Parameter estimation Function Ewb=Xiz1i-wxi-b) is a convex function The extremum can be achieved at the stationary point, i.e de ae dE 0w=2(u Ci -)xi, L=1 aE ab 2(mb ∑ Ci -wxD) 2/3/2021 PATTERN RECOGNITION 9
Parameter estimation Function 𝐸𝑤,𝑏 = σ𝑖=1 𝑚 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 2 is a convex function The extremum can be achieved at the stationary point, i.e. 2/3/2021 PATTERN RECOGNITION 9 𝜕𝐸 𝜕𝑤 = 0, 𝜕𝐸 𝜕𝑏 = 0 𝜕𝐸 𝜕𝑤 = 2(𝑤 𝑖=1 𝑚 𝑥𝑖 2 − 𝑖=1 𝑚 𝑦𝑖 − 𝑏 𝑥𝑖 ), 𝜕𝐸 𝜕𝑏 = 2(𝑚𝑏 − 𝑖=1 𝑚 𝑦𝑖 − 𝑤𝑥𝑖 )

Parameter estimation Solve the equations and we can have closed-form expression of w and b m ∑i1y(x1-x) W 2,b=m>Ci-wxi=y-w ∑ =1 (∑z1x) Where x=2∑m1x1,y=2∑m1y2 is the mean of x and y 2/3/2021 PATTERN RECOGNITION
Parameter estimation Solve the equations and we can have closed-form expression of w and b Where 𝑥ҧ= 1 𝑚 σ𝑖=1 𝑚 𝑥𝑖 , 𝑦ത = 1 𝑚 σ𝑖=1 𝑚 𝑦𝑖 is the mean of x and y 2/3/2021 PATTERN RECOGNITION 10 𝑤 = σ𝑖=1 𝑚 𝑦𝑖 (𝑥𝑖 − 𝑥ҧ) σ𝑖=1 𝑚 𝑥𝑖 2 − 1 𝑚 σ𝑖=1 𝑚 𝑥𝑖 2 , 𝑏 = 1 𝑚 𝑖=1 𝑚 (𝑦𝑖 − 𝑤𝑥𝑖 ) = 𝑦ത − 𝑤𝑥ҧ
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- Some Topics Deserved Concerns.ppt
- 《离散数学》课程教学资源(PPT课件讲稿)集合及其运算.pptx
- 《模式识别》课程教学资源(PPT课件讲稿)Chapter 04 参数模型.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)常数项级数的审敛法.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——关系及其运算(集合的运算).ppt
- 《模式识别 Pattern Recognition》课程教学资源(PPT课件讲稿)Sergios Theodoridis Konstantinos Koutroumbas.ppt
- 《数学模型》课程教学资源(PPT课件)第三章 简单的优化模型.ppt
- 西安电子科技大学:《运筹学》课程教学资源(PPT课件讲稿)第五章 动态规划.ppt
- 中国科学技术大学:《数理逻辑》课程教学资源(电子教案,PPT课件讲稿).pptx
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计(主讲:董庆宽).ppt
- 运城学院:《数学建模》课程教学资源(PPT讲稿)2018年暑期数学建模培训.ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)图论(图的基本概念).pptx
- 华东理工学院:《概率论与数理统计》课程教学资源(PPT课件讲稿)第3章 随机向量(主讲:刘剑平).ppt
- 《数学建模》课程教学资源(PPT讲稿)卡方检验(X2检验).ppt
- 《高等数学》课程教学资源(PPT讲稿)第七章 微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)第九章 多元函数微分学及其应用 第一节 多元函数的基本概念.ppt
- 《数值分析》课程教学资源(PPT课件讲稿)第三章 常微分方程的差分方法.ppt
- 《应用数学》课程教学资源(PPT课件)矩阵与线性方程组——矩阵概念与运算.ppt
- 《数学分析》课程教学资源(PPT课件讲稿)含参量反常积分.ppt
- 河北女子职业技术学院:《数学建模与数学实验》课程教学资源(PPT课件讲稿)非线性规划.ppt
- 《微积分》课程教学资源(PPT讲稿)微积分选讲(中国科学技术大学:宣本金).ppt
- 《线性代数》课程教学资源(PPT课件讲稿)知识点例题讲解(行列式、矩阵的概念及运算、可逆矩阵的概念、逆矩阵的性质、线性相关性的概念、方阵的特征值与特征向量).ppt
- 信息工程学院:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第十四章 排队论方法(韩中庚).pps
- 《概率论与数理统计》课程教学资源:教学大纲.pdf
- 新乡学院:《泛函分析》课程教学资源_教学大纲.pdf
- 《微积分》课程教学资源(PPT讲稿)Limits Involving Infinity; Asymptotes of Graphs.ppt
- 《复变函数与积分变换》课程教学大纲.pdf
- 清华大学出版社:《数学建模》课程教材PPT教学课件(线性规划与目标规划)第5章 目标规划.ppt
- 《计算数学》课程教学资源(PPT课件讲稿)第七章 非负矩阵.ppt
- 苏州市教育科学研究院:基于文化观视角的数学教育的追求(PPT讲稿).ppt
- 《幾何原本》的五大公設(PPT讲稿)几何原本的五大公设.ppt
- 上海中医药大学:《高等数学》课程教学资源(PPT课件讲稿)第五章 定积分及其应用.ppt
- 《数学模型》课程教学资源(PPT课件讲稿)第十一章 博弈模型.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章 曲线积分与曲面积分第三节 格林公式及其应用.ppt
- 新乡学院数学与信息科学学院:《矩阵分析》课程教学资源(教学大纲).pdf
- 新乡学院:《复变函数论》课程教学大纲.pdf
- 《离散数学》课程教学资源(PPT课件讲稿)第1章 命题逻辑.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——集合及其运算.pptx
- 计算几何教程(PPT课件讲稿)Computational Geometry.pptx
- 《数学建模》课程教学资源(PPT讲稿)Chapter 11 非线性规划 Nonlinear Programming.ppt