《模式识别 Pattern Recognition》课程教学资源(PPT课件讲稿)Sergios Theodoridis Konstantinos Koutroumbas

A Course on PATTERN RECOGNITION Sergios Theodoridis KonstantinosKoutroumbas Version 3 日
1 Sergios Theodoridis Konstantinos Koutroumbas Version 3

PATTERN RECOGNITON typical application areas Machine vision Character recognition(OCR) Computer aided diagnosis Speech /Music/Audio recognition Face recognition Biometrics Image data Base retrieval Data mining Social Networks Bionformatics The task: Assign unknown objects- patterns -into the correct cass. This is known as classification
2 PATTERN RECOGNITION ❖ Typical application areas ➢ Machine vision ➢ Character recognition (OCR) ➢ Computer aided diagnosis ➢ Speech/Music/Audio recognition ➢ Face recognition ➢ Biometrics ➢ Image Data Base retrieval ➢ Data mining ➢ Social Networks ➢ Bionformatics ❖ The task: Assign unknown objects – patterns – into the correct class. This is known as classification

Features: These are measurable quantities obtained from the patterns and the classification task is based on their respective values. Feature vectors: a number of features X 15°l constitute the feature vector X=IX R Feature vectors are treated as random vectors
3 ❖ Features: These are measurable quantities obtained from the patterns, and the classification task is based on their respective values. ❖Feature vectors: A number of features constitute the feature vector Feature vectors are treated as random vectors. ,..., , 1 l x x T l x = x1 ,..., xl R

An example
4 An example:

. the classifier consists of a set of functions whose values computed at x, determine the class to which the corresponding pattern belongs Classification system overview Patterns sensor feature generation feature selection classifier design system L evaluation
5 ❖ The classifier consists of a set of functions, whose values, computed at , determine the class to which the corresponding pattern belongs ❖ Classification system overview x sensor feature generation feature selection classifier design system evaluation Patterns

8 Supervised -unsupervised semisupervised pattern recognition The major directions of learning are Supervised Patterns whose class is known a-priori are used for training Unsupervised: The number of classes/groups is(in general)unknown and no training patterns are available Semisupervised: a mixed type of patterns is available. For some of them their corresponding class is known and for the rest is not
6 ❖ Supervised – unsupervised – semisupervised pattern recognition: The major directions of learning are: ➢ Supervised: Patterns whose class is known a-priori are used for training. ➢ Unsupervised: The number of classes/groups is (in general) unknown and no training patterns are available. ➢ Semisupervised: A mixed type of patterns is available. For some of them, their corresponding class is known and for the rest is not

CLASSIFTERS BASED ON BAYES DECISION THEORY Statistical nature of feature vectors x=[x,x2…,x丁 8 assign the pattern represented by feature vector x to the most probable of the available classes a122…OM That is x=>@: P(o,lx) maximum
7 CLASSIFIERS BASED ON BAYES DECISION THEORY ❖ Statistical nature of feature vectors ❖ Assign the pattern represented by feature vector to the most probable of the available classes That is maximum T 1 2 l x = x ,x ,...,x x 1 ,2 ,..., M x : P( x) →i i

Computation of a-posteriori probabilities >Assume known a-priori probabilities P(1),P(O2)…P(O4) p(a,),i=1, 2,,M This is also known as the likelihood of xF·toO
8 ❖ Computation of a-posteriori probabilities ➢ Assume known • a-priori probabilities • This is also known as the likelihood of ( ), ( )..., ( ) P 1 P 2 P M p(xi ),i =1,2,...,M . . . i x wr to

The bayes rule(m=2) P(x)P(ox)=p(xo )P(a,)= (@, p(xO)P(O) Where p(x)=∑p(xo)P()
9 = = = = 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i i i i i i i i i p x p x P p x p x P P x p x P x p x P ➢ The Bayes rule (Μ=2) where

The Bayes classification rule(for two classes M=2) Given x classify it according to the rule P(ax)>P(a2x)x→a fP(a2)>P(a|x)x→O s equivalently: classify x according to the rule P(a)P(a)(<p(xa)P(a) For equiprobable classes the test becomes P(xo(p(xo2
10 ❖ The Bayes classification rule (for two classes M=2) ➢ Given classify it according to the rule ➢ Equivalently: classify according to the rule ➢ For equiprobable classes the test becomes x 2 1 2 1 2 1 ( ) ( ) ( ) ( ) → → P x P x x P x P x x If If ( ) ( )( ) ( ) ( ) 1 1 2 P 2 p x P p x ( )( ) ( ) 1 2 p x p x x
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《数学模型》课程教学资源(PPT课件)第三章 简单的优化模型.ppt
- 西安电子科技大学:《运筹学》课程教学资源(PPT课件讲稿)第五章 动态规划.ppt
- 中国科学技术大学:《数理逻辑》课程教学资源(电子教案,PPT课件讲稿).pptx
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计(主讲:董庆宽).ppt
- 运城学院:《数学建模》课程教学资源(PPT讲稿)2018年暑期数学建模培训.ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)图论(图的基本概念).pptx
- 华东理工学院:《概率论与数理统计》课程教学资源(PPT课件讲稿)第3章 随机向量(主讲:刘剑平).ppt
- 《数学建模》课程教学资源(PPT讲稿)卡方检验(X2检验).ppt
- 《高等数学》课程教学资源(PPT讲稿)第七章 微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)第九章 多元函数微分学及其应用 第一节 多元函数的基本概念.ppt
- 《数值分析》课程教学资源(PPT课件讲稿)第三章 常微分方程的差分方法.ppt
- 《应用数学》课程教学资源(PPT课件)矩阵与线性方程组——矩阵概念与运算.ppt
- 《数学分析》课程教学资源(PPT课件讲稿)含参量反常积分.ppt
- 河北女子职业技术学院:《数学建模与数学实验》课程教学资源(PPT课件讲稿)非线性规划.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第二讲 数列的极限.ppt
- 上海大学:凸体几何中的极值问题(PPT讲稿,数学系:冷岗松).ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第一章 函数与极限 §1.1 函数.ppt
- 四川大学:《微积分》课程教学资源(试卷习题)定积分例题 Calculus.pptx
- 图论的介绍(PPT课件讲稿)Graph Theor.ppt
- 《量子化学》课程教学资源(PPT课件讲稿)第三章 矩阵与算符.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——关系及其运算(集合的运算).ppt
- 《高等数学》课程教学资源(PPT课件讲稿)常数项级数的审敛法.ppt
- 《模式识别》课程教学资源(PPT课件讲稿)Chapter 04 参数模型.ppt
- 《离散数学》课程教学资源(PPT课件讲稿)集合及其运算.pptx
- Some Topics Deserved Concerns.ppt
- 同济大学:线性模型(PPT课件讲稿)Linear Model.pptx
- 《微积分》课程教学资源(PPT讲稿)微积分选讲(中国科学技术大学:宣本金).ppt
- 《线性代数》课程教学资源(PPT课件讲稿)知识点例题讲解(行列式、矩阵的概念及运算、可逆矩阵的概念、逆矩阵的性质、线性相关性的概念、方阵的特征值与特征向量).ppt
- 信息工程学院:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第十四章 排队论方法(韩中庚).pps
- 《概率论与数理统计》课程教学资源:教学大纲.pdf
- 新乡学院:《泛函分析》课程教学资源_教学大纲.pdf
- 《微积分》课程教学资源(PPT讲稿)Limits Involving Infinity; Asymptotes of Graphs.ppt
- 《复变函数与积分变换》课程教学大纲.pdf
- 清华大学出版社:《数学建模》课程教材PPT教学课件(线性规划与目标规划)第5章 目标规划.ppt
- 《计算数学》课程教学资源(PPT课件讲稿)第七章 非负矩阵.ppt
- 苏州市教育科学研究院:基于文化观视角的数学教育的追求(PPT讲稿).ppt
- 《幾何原本》的五大公設(PPT讲稿)几何原本的五大公设.ppt
- 上海中医药大学:《高等数学》课程教学资源(PPT课件讲稿)第五章 定积分及其应用.ppt
- 《数学模型》课程教学资源(PPT课件讲稿)第十一章 博弈模型.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章 曲线积分与曲面积分第三节 格林公式及其应用.ppt