Some Topics Deserved Concerns

Some Topics deserved Concerns Songcan Chen 2013.3.6
Some Topics Deserved Concerns Songcan Chen 2013.3.6

Outlines Copula its applications Kronecker decomposition for matrix Covariance Descriptors Metric on manifold
Outlines • Copula & its applications • Kronecker Decomposition for Matrix • Covariance Descriptors & Metric on manifold

Copula its applications [1 Fabrizio durante and Carlo Sempi, Copula Theory: An Introduction(Chapt. 1), P. Jaworski et al. (eds ) Copula Theory and Its Applications, Lecture Notes in Statistics 198.2010 [2]Jean-David Fermanian, An overview of the goodness-of-fit test problem for copulas(Chapt 1), arXiv: 19 NoV 2012 Applications [Al] David Lopez-Paz, Jose Miguel Hernandez-Lobato, Bernhard Scholkopf, Semi- Supervised Domain Adaptation with Non-Parametric Copulas NIPS2012/arXiv: 1 Jan, 2013 [A2]David Lopez-Paz, et al, Gaussian Process vine Copulas for Multivariate Dependence, ICML2013/arXiV: 16 Feb 2013 [A3 Carlos Almeida, et al, Modeling high dimensional time-varying dependence using D-vine SCAR models, arXiv: 9 Feb 2012 [A4] Alexander Baue, et al, Pair-copula Bayesian networks, arXiv: 23 NoV. 2012
[1] Fabrizio Durante and Carlo Sempi, Copula Theory: An Introduction (Chapt. 1), P. Jaworski et al. (eds.), Copula Theory and Its Applications, Lecture Notes in Statistics 198,2010. [2] Jean-David Fermanian, An overview of the goodness-of-fit test problem for copulas (Chapt 1), arXiv: 19 Nov. 2012. Applications [A1] David Lopez-Paz, Jose Miguel Hernandez-Lobato, Bernhard Scholkopf, SemiSupervised Domain Adaptation with Non-Parametric Copulas, NIPS2012/arXiv:1 Jan,2013. [A2] David Lopez-Paz, et al, Gaussian Process Vine Copulas for Multivariate Dependence, ICML2013/arXiv: 16 Feb. 2013. [A3] Carlos Almeida, et al, Modeling high dimensional time-varying dependence using D-vine SCAR models, arXiv: 9 Feb. 2012. [A4] Alexander Baue, et al, Pair-copula Bayesian networks, arXiv:23 Nov. 2012. … … Copula & its applications

Kronecker Decomposition for matrix []C.V. Loan and N. Pitsianis, Approximation with kronecker products, in Linear Algebra for Large Scale and Real Time Applications. Kluwer Publications, 1993, pp. 293-314 [2] T. Tsiligkaridis, A Hero, and s Zhou, On Convergence of Kronecker Graphical Lasso Algorithms, to appear in IEEE TSP, 2013 [3-, Convergence Properties of Kronecker Graphical Lasso Algorithms, aXv:12040585,July2012 [4]-, Low Separation Rank Covariance Estimation using Kronecker Product Expansions, google 2013 [5---Covariance Estimation in High Dimensions via Kronecker Product Expansions, arXiv: 12 Feb 2013 [6] SPARSE COVARIANCE ESTIMATION UNDER KRONECKER PRODUCT STRUCTURE, ICCASP2012, pp: 3633-3636 7 Marco F Duarte, Richard G Baraniuk, Kronecker Compressive Sensing IEEE TIE,21(24945042012 8]MARTIN SINGULL, et al, More on the Kronecker Structured Covariance Matrix, Communications in Statistics-Theory and Methods, 41: 2512-2523 2012
Kronecker Decomposition for Matrix [1] C. V. Loan and N. Pitsianis, Approximation with kronecker products, in Linear Algebra for Large Scale and Real Time Applications. Kluwer Publications, 1993, pp. 293–314. [2] T. Tsiligkaridis, A. Hero, and S. Zhou, On Convergence of Kronecker Graphical Lasso Algorithms, to appear in IEEE TSP, 2013. [3] ---, Convergence Properties of Kronecker Graphical Lasso Algorithms, arXiv:1204.0585, July 2012. [4] ---, Low Separation Rank Covariance Estimation using Kronecker Product Expansions, google 2013. [5] --- Covariance Estimation in High Dimensions via Kronecker Product Expansions, arXiv:12 Feb. 2013. [6] --- SPARSE COVARIANCE ESTIMATION UNDER KRONECKER PRODUCT STRUCTURE, ICCASP2012,pp:3633-3636. [7] Marco F. Duarte, Richard G. Baraniuk, Kronecker Compressive Sensing, IEEE TIP, 21(2)494-504 2012 [8] MARTIN SINGULL, et al, More on the Kronecker Structured Covariance Matrix, Communications in Statistics—Theory and Methods, 41: 2512–2523, 2012

Covariance Descriptor [1]Oncel Tuzel, Fatih Porikli, and Peter Meer, Region Covariance-A Fast Descriptor for Detection and Classification, Tech Report 2005 2 Yanwei Pang, Yuan Yuan, Xuelong Li, Gabor-Based Region Covariance Matrices for Face Recognition, IEEE T CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 18(7)9899932008 [3]Anoop Cherian, et al, Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices, IEEE TPAMI, in press, 2012 [4] Pedro Cortez Cargill,et al, Object Tracking based on Covariance Descriptors and On-Line Naive Bayes Nearest Neighbor Classifier, 2010 4th Pacific-Rim Symp Image and video Technology, pp 139-144 5] Ravishankar Sivalingam, et al, Positive Definite Dictionary Learning for Region Covariances, ICCV 2011 [6] Mehrtash T Harandi, et al, Kernel Analysis over Riemannian Manifolds for Visual Recognition of Actions Pedestrians and Textures, cVPR2012
Covariance Descriptor [1] Oncel Tuzel, Fatih Porikli, and Peter Meer,Region Covariance-A Fast Descriptor for Detection and Classification, Tech. Report 2005. [2] Yanwei Pang, Yuan Yuan, Xuelong Li, Gabor-Based Region Covariance Matrices for Face Recognition, IEEE T CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 18(7):989-993,2008 [3] Anoop Cherian, et al, Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices, IEEE TPAMI, in press, 2012. [4] Pedro Cortez Cargill,et al, Object Tracking based on Covariance Descriptors and On-Line Naive Bayes Nearest Neighbor Classifier, 2010 4th Pacific-Rim Symp. Image and Video Technology,pp.139-144. [5] Ravishankar Sivalingam, et al, Positive Definite Dictionary Learning for Region Covariances, ICCV 2011. [6] Mehrtash T. Harandi, et al, Kernel Analysis over Riemannian Manifolds for Visual Recognition of Actions, Pedestrians and Textures, CVPR2012

Copula its applications
Copula & its applications

What is Copula? Definition Copulas are statistical tools that factorize multivariate distributions into the product of its marginals and a function that captures any possible form of dependence among them(marginals). This function is referred to as the copula, and it links the marginals together into the joint multivariate model
What is Copula? • Definition Copulas are statistical tools that factorize multivariate distributions into the product of its marginals and a function that captures any possible form of dependence among them (marginals). This function is referred to as the copula, and it links the marginals together into the joint multivariate model

What is Copula? Mathematical formulation p(x)=I(x;)c(Px),…,P(za).( 1 copula P(Xi is the marginal cdf of the random variable Xi Interestingly, this density has uniform marginals, since P(z)U[0; 1] for any random variable Z When P(X);.; P(Xa are continuous, the copula c( )is unique
What is Copula? • Mathematical formulation: P(xi ) is the marginal cdf of the random variable xi . Interestingly, this density has uniform marginals, since P(z)~ U[0; 1] for any random variable z. When P(x1 ); … ; P(xd ) are continuous, the copula c(.) is unique (2)

Especially, When factorizing multivariate densities into a product of marginal distributions and bivariate copula functions (called as vines) Each of these factors corresponds to one of the building blocks that are assumed either constant or varying across different learning domains applicable to DA, TL and mtL
Especially, when factorizing multivariate densities into a product of marginal distributions and bivariate copula functions (called as vines). Each of these factors corresponds to one of the building blocks that are assumed either constant or varying across different learning domains. → applicable to DA, TL and MTL!

Characteristics Infinitely many multivariate models share the same underlying copula function Figure 1: Left, sample from a Gaussian copula with correlation p=0.8. Middle and right, two samples drawn from multivariate models with this same copula but different marginal distributions, depicted as rug plots
Characteristics Infinitely many multivariate models share the same underlying copula function!
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《离散数学》课程教学资源(PPT课件讲稿)集合及其运算.pptx
- 《模式识别》课程教学资源(PPT课件讲稿)Chapter 04 参数模型.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)常数项级数的审敛法.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——关系及其运算(集合的运算).ppt
- 《模式识别 Pattern Recognition》课程教学资源(PPT课件讲稿)Sergios Theodoridis Konstantinos Koutroumbas.ppt
- 《数学模型》课程教学资源(PPT课件)第三章 简单的优化模型.ppt
- 西安电子科技大学:《运筹学》课程教学资源(PPT课件讲稿)第五章 动态规划.ppt
- 中国科学技术大学:《数理逻辑》课程教学资源(电子教案,PPT课件讲稿).pptx
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第七章 参数估计(主讲:董庆宽).ppt
- 运城学院:《数学建模》课程教学资源(PPT讲稿)2018年暑期数学建模培训.ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)图论(图的基本概念).pptx
- 华东理工学院:《概率论与数理统计》课程教学资源(PPT课件讲稿)第3章 随机向量(主讲:刘剑平).ppt
- 《数学建模》课程教学资源(PPT讲稿)卡方检验(X2检验).ppt
- 《高等数学》课程教学资源(PPT讲稿)第七章 微分方程.ppt
- 《高等数学》课程教学资源(PPT课件)第九章 多元函数微分学及其应用 第一节 多元函数的基本概念.ppt
- 《数值分析》课程教学资源(PPT课件讲稿)第三章 常微分方程的差分方法.ppt
- 《应用数学》课程教学资源(PPT课件)矩阵与线性方程组——矩阵概念与运算.ppt
- 《数学分析》课程教学资源(PPT课件讲稿)含参量反常积分.ppt
- 河北女子职业技术学院:《数学建模与数学实验》课程教学资源(PPT课件讲稿)非线性规划.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第二讲 数列的极限.ppt
- 同济大学:线性模型(PPT课件讲稿)Linear Model.pptx
- 《微积分》课程教学资源(PPT讲稿)微积分选讲(中国科学技术大学:宣本金).ppt
- 《线性代数》课程教学资源(PPT课件讲稿)知识点例题讲解(行列式、矩阵的概念及运算、可逆矩阵的概念、逆矩阵的性质、线性相关性的概念、方阵的特征值与特征向量).ppt
- 信息工程学院:《数学建模方法及其应用》课程教学资源(PPT课件讲稿)第十四章 排队论方法(韩中庚).pps
- 《概率论与数理统计》课程教学资源:教学大纲.pdf
- 新乡学院:《泛函分析》课程教学资源_教学大纲.pdf
- 《微积分》课程教学资源(PPT讲稿)Limits Involving Infinity; Asymptotes of Graphs.ppt
- 《复变函数与积分变换》课程教学大纲.pdf
- 清华大学出版社:《数学建模》课程教材PPT教学课件(线性规划与目标规划)第5章 目标规划.ppt
- 《计算数学》课程教学资源(PPT课件讲稿)第七章 非负矩阵.ppt
- 苏州市教育科学研究院:基于文化观视角的数学教育的追求(PPT讲稿).ppt
- 《幾何原本》的五大公設(PPT讲稿)几何原本的五大公设.ppt
- 上海中医药大学:《高等数学》课程教学资源(PPT课件讲稿)第五章 定积分及其应用.ppt
- 《数学模型》课程教学资源(PPT课件讲稿)第十一章 博弈模型.ppt
- 《高等数学》课程教学资源(PPT课件)第十一章 曲线积分与曲面积分第三节 格林公式及其应用.ppt
- 新乡学院数学与信息科学学院:《矩阵分析》课程教学资源(教学大纲).pdf
- 新乡学院:《复变函数论》课程教学大纲.pdf
- 《离散数学》课程教学资源(PPT课件讲稿)第1章 命题逻辑.ppt
- 南京大学:《离散数学》课程教学资源(PPT课件讲稿)集合论——集合及其运算.pptx
- 计算几何教程(PPT课件讲稿)Computational Geometry.pptx