香港科技大学:Graph Evacuation Problems

Graph Evacuation Problems Mordecai golin Hong Kong UST CRM June 2015
Graph Evacuation Problems Mordecai GOLIN Hong Kong UST CRM June, 2015

Joint work with Guru Prakash Arumugam John augustine Di chen Siu-Wing Cheng Yuya higashikawa Naoki Katoh Guangun Ni asan力Sana Yinfen地
Joint Work with • Guru Prakash Arumugam • John Augustine • Di Chen • Siu-Wing Cheng • Yuya Higashikawa • Naoki Katoh • Guanqun Ni • Bing Su • Prashanth Srikanthan • Yinfeng Xu 2

Outline ynamIc FloW Networks Congestion in Dynamic Flows Evacuation flows Problem definitions Known results EXample algorithm 1: k-Sink Evacuation on a Path Example algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity Open problems
Outline • Dynamic Flow Networks • Congestion in Dynamic Flows • Evacuation Flows • Problem Definitions • Known Results • Example Algorithm 1: k-Sink Evacuation on a Path • Example Algorithm 2: 1-sink Min-Max Regret Evacuation on a Path with uniform capacity • Open Problems 3

Evacuating graphs Graph g=(V, E) represents structure Vertices are rooms, Edges are hallways Vertices are Buildings, Edges are roads Edge weight Te is transit time on edge Edge capacity Ce is " width Special vertices(sinks)are emergency exits In case of emergency, want to evacuate everybody to exits as quickly as possible Problem: Design good Evacuation Protocols Often Approached via Dynamic Flow Networks
Evacuating Graphs • Graph G=(V,E) represents structure • Vertices are rooms, Edges are Hallways • Vertices are Buildings, Edges are roads • Edge weight 𝜏e is transit time on edge • Edge capacity ce is “width” • Special vertices (sinks) are emergency exits • In case of emergency, want to evacuate everybody to exits as quickly as possible • Problem: Design Good Evacuation Protocols • Often Approached via Dynamic Flow Networks

Dynamic Flow Networks G=(,E丿 Edges have travel times Te and capacities ce Distinguished source s and sink t Max Flow Over Time Problem (input 7) How much flow can be pushed from s to t in time T? Ford Fulkerson (1958) Not polynomial( Constructs Static Max-Flow each timestep) Quickest Flow Problem (input w How quickly can W items be moved from s to t? Burkard, Dlasks and Klinz (1993) Strongly Polynomial (uses parametric search) Quickest Transhipment Problem Like QF Problem but Multiple Sources/Sinks (with fixed supply/demands) Hoppe T ardos(2000) Strongly polynomial(but uses sub modular optimization)
Dynamic Flow Networks • G=(V,E) • Edges have travel times 𝜏e and capacities ce • Distinguished source s and sink t • Max Flow Over Time Problem (input T) How much flow can be pushed from s to t in time T? • Ford Fulkerson (1958) • Not polynomial (Constructs Static Max-Flow each timestep) • Quickest Flow Problem (input W) How quickly can W items be moved from s to t? • Burkard, Dlasks and Klinz (1993) • Strongly Polynomial (uses parametric search) • Quickest Transhipment Problem Like QF Problem but Multiple Sources/Sinks (with fixed supply/demands) • Hoppe & Tardos (2000) • Strongly Polynomial (but uses sub modular optimization) s t

Edges have Capacities Original flow model is static. Doesnt model time Time required is function of both transit times and capacities Ce is edge capacity("width") At most Ce people can enter edge e=lu, vin one time unit They travel together as a group on e If more than Ce people at U, remainder need to wait to enter e Te is time for one group to traverse edge Start with W people at u How much time does take them all to reach v? C=2
Edges have Capacities • Original Flow Model is static. Doesn’t model time • Time required is function of both transit times and capacities • ce is edge capacity (“width”) • At most ce people can enter edge e=(u,v) in one time unit. They travel together as a group on e • If more than ce people at u, remainder need to wait to enter e • 𝜏e is time for one group to traverse edge • Start with W people at u How much time does take them all to reach v? 13 u v 𝜏=3 c=2

t=0
13 u v 𝜏=3 c=2 t=0

2 C=2
11 u v 𝜏=3 c=2 t=1 2

t=2 9 2 2 C=2
9 u v 𝜏=3 c=2 t=2 2 2

t=3 2 C=2
7 u v 𝜏=3 c=2 t=3 2 2 2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 高等教育出版社:《高等数学》课程电子教案(PPT课件,同济第七版)绪论、映射与函数(制作:张士军).ppt
- 南阳师范学院:《高等数学》课程教学资源(练习题)第四章 不定积分.pdf
- 南阳师范学院:《高等数学》课程教学资源(练习题)第十章 无穷级数(王阳).pdf
- 新乡学院:《实变函数论》课程教学资源(教学大纲).pdf
- 《概率论与数理统计》课程教学资源:教学大纲.pdf
- 《数学物理方程》课程PPT教学课件(讲稿)课程教学大纲.pdf
- 《数学建模》课程教学资源(PPT课件讲稿)第四讲 Matlab绘图.ppt
- 数学软件Matlab(PPT课件讲稿)编程基础(脚本文件).ppt
- 西安电子科技大学:《运筹学》课程教学资源(PPT课件讲稿)第七章 运输问题.ppt
- 《高等数学》课程教学资源(PPT讲稿)ODE的求解(常微分方程 ordinary differential equation).ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第六章 微分方程模型.ppt
- 《复变函数论》课程教学大纲.pdf
- 《离散数学》课程教学资源(PPT课件讲稿)第四章 二元关系.ppt
- 西华大学:《高等数学》课程教学资源(PPT课件讲稿)定积分的应用(主讲:朱雯).ppt
- 《几何建模与处理基础》课程教学资源(PPT讲稿)曲线细分.pptx
- 东南大学:《C语言程序设计》课程电子教案(PPT教学课件)第八章 函数.ppt
- 华中科技大学:《数学建模 Mathematical Modeling》课程教学资源(PPT课件讲稿)第三章 微分方程方法建模.ppt
- 安徽理工大学:《运筹学》课程教学资源(PPT课件讲稿)第五章 动态规划.ppt
- 《离散数学》课程教学资源(PPT课件讲稿)第二章 谓词逻辑.ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第三章 优化模型.ppt
- 《微积分 Calculus》课程教学资源(PPT培训课件)Chapter 3 Integration.ppt
- 南开大学:《数理统计》课程教学资源(PPT讲稿)课程简介(主讲:王兆军).ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第十章 建模方法论.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)高斯公式(Green 公式).ppt
- 苏州大学:《计算方法》课程教学资源(PPT课件讲稿)第一章 算法与误差.ppt
- 《高等数学》课程教学资源(PPT讲稿)常数项级数的审敛法.ppt
- 《高等数学》课程教学资源(PPT课件讲稿)第十一章 曲线积分与曲面积分.ppt
- 白城师范学院:《概率论与数理统计》课程教学资源(PPT课件讲稿)第五章 统计量及其分布.ppt
- 西华大学:《高等数学》课程教学资源(PPT课件讲稿)二重积分的概念与性质.ppt
- 《应用数学》课程教学课件(PPT讲稿)第七模块 矩阵与线性方程组 第一节 行列式的概念与性质.ppt
- 《数理逻辑》课程教学资源(PPT课件讲稿)第5章 谓词逻辑的等值和推理演算.ppt
- 《数理统计》课程教学课件(PPT讲稿)第一章 统计推断准备.ppt
- 《线性代数》课程教学资源(PPT课件讲稿)求解线性方程组、特征值、特征向量的计算.pptx
- 数学软件Matlab(PPT讲稿)二维平面作图、三维空间作图.ppt
- 傅立叶变换的性质(PPT课件讲稿)Properties of Fourier Transform.ppt
- 华东理工大学:应用概率统计(PPT课件讲稿)独立性及其应用、离散型随机变量及其分布.ppt
- 《高等数学》课程教学资源(PPT习题课)多元函数微分学、二重积分.ppt
- 《数学分析》课程教学资源(PPT课件讲稿)第二章 单变量微分学(题解).ppt
- 《复变函数与积分变换》课程教学资源(PPT课件讲稿)第四章 解析函数的级数表示(The representation of power series of analytic function).ppt
- 山东大学:《概率统计》课程PPT教学课件(讲稿)第7章 回归分析和方差分析(7.1)一元线性回归.ppt