《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.4 The Limits of Sequences

Chapter1LimitsFunctionsandS 1.4 The Limits of Sequences
Chapter 1 Functions and Limits §1.4 The Limits of Sequences

I.Infinite Sequencea,az,"",an,isanorderedarrangementofrealnumbers.FormalDefinitionInfinitesequenceisafunctionwhosedomainisthesetof positive integers and whose range is a set of realnumbers.explicitformulaan =3n-2recursionformulaa, =1, a,=an-1+3, n≥2S1.4TheLimitsofSequences
§1.4 The Limits of Sequences I. Infinite Sequence a1 ,a2 , ,an , is an ordered arrangement of real numbers. Formal Definition Infinite sequence is a function whose domain is the set of positive integers and whose range is a set of real numbers. explicit formula an = 3n − 2 recursion formula a1 = 1, an = an−1 + 3, n 2

I. Infinite SeguenceFor instance:1n2a, =1+(-1)M3425an, =(-1)"5342n0.99,0.99,0.99, 0.99, ...a,=0.99Q: Do they converge to 1?S 1.4 The Limits ofSeguences
§1.4 The Limits of Sequences , 5 4 , 4 5 , 3 2 , 2 3 0, − − n a n n 1 = (−1) + , 5 4 , 4 5 , 3 2 , 2 3 0, n a n n 1 = 1+ (−1) , 5 4 , 4 3 , 3 2 , 2 1 0, n an 1 = 1− 0.99, 0.99, 0.99, 0.99, an = 0.99 For instance: Q: Do they converge to 1? I. Infinite Sequence -1 0 1 • • ••• -1 0 1 • •• • • -1 0 1 • • • • • -1 0 1 •

Il. Limit of Infinite SequenceRelationship with the two limits1+n1+xf(x)nxV>0S 1.4TheLimitsofSequences
§1.4 The Limits of Sequences Relationship with the two limits x x f x + = 1 ( ) n n f n + = 1 ( ) − + 1 1 0, n n II. Limit of Infinite Sequence

II. Limit of Infinite SequenceDef:The sequencef x.is said to converge to L, and we writelim x, = Ln->00if for each given number , there is a correspondingpositive number Nsuch that n>N=x,-L0,N>0, s.t. Vn>N=x, -L0S 1.4TheLimitsofSequences
§1.4 The Limits of Sequences II. Limit of Infinite Sequence Def: The sequence is said to converge to L, and we write if for each given number , there is a corresponding positive number N such that . A sequence that fails to converge to any finite number L is said to diverge, or to be divergent. xn xn L n = → lim n N x − L n N n N x − L n = 0, 0,s.t. → xn L n lim − N Def :

Il. Limit of Infinite Sequencelim x, =a≤V>0,3N>0, s.t. Vn>N=x, -al N, all the points x, are in the neighborhoodU(a,e) where there are finite points (at most N points)not in .S 1.4TheLimitsofSeguences
§1.4 The Limits of Sequences II. Limit of Infinite Sequence Geometric interpretation x 1 x 2 x xN +1 xN +2 x3 2 a − a + a x4 N n N x − a s.t. n = 0, 0, → xn a n lim When , all the points xn are in the neighborhood where there are finite points (at most N points) not in . U(a, ) n N

II. Limit of Infinite SequenceExample11. Prove that the limit of the sequence 1,q,q',..",q"-l,is 0, provided that q 1+logg 8.We choose N =[1+ log/a ] ,Then n> N implies thatThat is lim qn-l = 0.S1.'4TheLimitsofSequences
§1.4 The Limits of Sequences Example 1 0 1. 1. 1, , , , , 2 1 − q q q q n is ,provided that Prove that the limit of the sequence Proof Let be given. that is 1 log . q n + If we want , − = − − 1 1 0 n n q q Then n N implies that n−1 q We choose , N q = 1+ log That is lim 0 . 1 = − → n n q II. Limit of Infinite Sequence

I. Limit of Infinite SequenceExample 12. Prove thatlim(Vn+1-Vn)= 0n>oS 1.4 TheLimits ofSeguences
§1.4 The Limits of Sequences lim( +1 − ) = 0 → n n n 2.Prove that Example 1 II. Limit of Infinite Sequence

Ill. Properties of the Limit1.UniquenessTh: Let x, →a,x, →b(n →oo), then a = b.2.BoundednessTh: Let x, →a(n →oo), then x, is boundedS 1.4TheLimitsofSeguences
§1.4 The Limits of Sequences 1. Uniqueness x a, x b(n ), a b. Th: Let n → n → → then = 2. Boundedness ( ), then is bounded. xn → a n → xn Th: Let III. Properties of the Limit

Ill. Properties of the Limit1.UniquenessTh: Let lim f(x) = A,lim f(x) = B,then A = B.x→a-2. Local boundedness1Th:Let lim f(x) = A, then 3S > 0, when x e U(a,S),x→a3M > 0, f(x)|≤ M.S 1.4TheLimitsofSeguences
§1.4 The Limits of Sequences 1. Uniqueness lim f (x) A,lim f (x) B, A B. x a x a = = = → → Th: Let then 2. Local boundedness Th: 0, ( ) . lim ( ) , 0, ( , ), 0 M f x M f x A x U a x a = → Let then when III. Properties of the Limit
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.3 The Limits of Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits 1.2 Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.10 Properties of Continuous Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.1 Preliminaries for Calculus.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用(习题课).ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第六节 平均值.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第五节 功、水压力和引力.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第四节 平面曲线的弧长.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第三节 体积.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第二节 平面图形的面积.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第一节 定积分的元素法.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分(习题课).ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第五节 积分表的使用.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第四节 几种特殊类型函数的积分.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第三节 分部积分法.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第二节 换元积分法.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第一节 不定积分的概念与性质.ppt
- 《高等数学》课程教学大纲 Higher Mathematics(A).pdf
- 《数值计算》课程教学课件(讲稿)第3章 拟合与逼近(1/3).pdf
- 《数值计算》课程教学课件(讲稿)第1章 绪论(1/2).pdf
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.5 Infinitesimal and Infinite Limit.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.6 Limit Theorems.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.7 Two Remarkable Limits.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.8 Comparison of Infinitesimals.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.9 Continuity of Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 1 Definition and Properties of Infinite Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 2 Convergence Tests for Series of Constant.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 3 Power Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 4 Power Series Representation for Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 7 Fourier Series.ppt
- 《高等数学》课程教学实验指导(上).doc
- 《高等数学》课程教学实验指导(下).doc
- 《高等数学》课程教学资源(作业习题)高等数学练习册(上,含参考答案).doc
- 《高等数学》课程教学资源(作业习题)高等数学练习册(下,含参考答案).doc
- 《结构工程中的数学方法》课程教学课件(讲稿)symbols.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Topic_2_Algebra.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Topic_1_Errors.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)matrix_inversion.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_system_structure.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_LU_decomp.pdf