《结构工程中的数学方法》课程教学课件(讲稿)symbols

IntroductionListofSymbolsMeaning (if not self-explaining)Symbol and TermRreal numbersIRnn-dimensional Euclidean spaceIDuniversecomprehensivesetasthebasisforconsiderationsX, Avariable,term△difference8small numberOR"small change"variation8infinity[xabsolutevalueof x[a, b]closed intervalbounds a and b belong to the interval(a, b)open intervalaandbdo not belong to the interval[a, b)half-open intervala belongs to the interval but b does not9MichaelBeer,EngineeringMathematics
4 Symbol and Term 0 Introduction List of Symbols ∆ x Meaning (if not self-explaining) real numbers n n-dimensional Euclidean space universe x, A variable, term comprehensive set as the basis for considerations difference δ small number OR variation [a, b] infinity bounds a and b belong to the interval (a, b) open interval a and b do not belong to the interval [a, b) half-open interval a belongs to the interval but b does not closed interval ∞ absolute value of x "small change" Michael Beer, Engineering Mathematics

oIntroductionListof SymbolsMeaning (if not self-explaining)Symbol and Termf(.)functionfunctionof thevariables inparenthesis0(hn)Landau notationthe variable h does not appear in O(hn)term of order hnwithan exponent smaller thannd, dnsingle, n-fold differentiationa, ansingle,n-fold partial differentiation,口first,second derivative",(4)third,fourth derivative2()sum over()fromi=a toi=n1j() dx integral over (.)dx from x=a to x=bn!factorialn!=1.2.....nlim()limesof()forn-mlimitof(.)whennapproachesmn-mexp() = e()exponential functionexp(0)with basee5Michael Beer,EngineeringMathematics
Michael Beer, Engineering Mathematics 5 Symbol and Term List of Symbols Meaning (if not self-explaining) ( ) sum over (.) from i=a to i=n = ∑ n i a . n! n! 1 2 n =⋅⋅ ⋅ ( ) n m→ lim . ( ) b a ∫ . dx integral over (.)dx from x=a to x=b factorial limes of (.) for n→m limit of (.) when n approaches m single, n-fold differentiation single, n-fold partial differentiation ', '' first, second derivative d, dn ∂, ∂n ''' , third, fourth derivative (4) f(.) function function of the variables in parenthesis Landau notation, term of order hn O(hn) the variable h does not appear in O(hn) with an exponent smaller than n 0 Introduction exp .( ) exponential function with base e ( ) (.) exp . e =

IntroductionListof SymbolsMeaning (if not self-explaining)Symbol and Termgoesto,approaches ORterm and meaning→mappingORisgiven bythe contextreplacement1exchangeimplication,if....then...ORterm and meaningconclusion ORis given bythe contexttargetingat(optimisation)DequivalenceAmuchsmallerthanVuniversal quantifier,for all3existential guantifier,there existsEelementofnot element of史NAnotapplicable6Michael Beer, Engineering Mathematics
6 Symbol and Term List of Symbols Meaning (if not self-explaining) ⇒ ⇔ implication, if ., then . OR conclusion OR targeting at (optimisation) term and meaning is given by the context equivalence ∀ much smaller than universal quantifier, for all $ ∉ existential quantifier, there exists not element of NA not applicable → goes to, approaches OR mapping OR replacement ↔ exchange term and meaning is given by the context ∈ element of 0 Introduction Michael Beer, Engineering Mathematics

IntroductionListof SymbolsMeaning (if not self-explaining)Symbol and TermX, Avector,matrixcolumn vector:Xx=1X.X = (Xi...,X.)row vector:ATtransposed matrix of AA-1inverse matrix of A1identitymatrixallelementsinthemaindiagonal are1all remaining elements are 0dot,inner,scalar productxcross,outer,Cartesian productrk(A)rank of matrix Adet(A)determinant of matrix AIA|determinant of matrix AMichaelBeer,EngineeringMathematics
7 Symbol and Term List of Symbols x A, Meaning (if not self-explaining) vector, matrix x = (x ,., x 1 n ) 1 n x x = x T A −1 A transposed matrix of A column vector: row vector: inverse matrix of A rk(A) det(A) × I identity matrix all elements in the main diagonal are 1, all remaining elements are 0 · dot, inner, scalar product cross, outer, Cartesian product rank of matrix A determinant of matrix A |A| determinant of matrix A 0 Introduction Michael Beer, Engineering Mathematics

IntroductionListof SymbolsMeaning (if not self-explaining)Symbol and TermA = (..] setthe elements of A are given in the bracecsubsetBdomainformed bydefined setsas a subset of a universe"length"of a vector ormatrixIxll,l/A/|norm of vector x, of matrix A[AIcardinality of set A"number of elements"in ACcomplexnumbersRe(c)real part of ceCIm(c)imaginary part of c eCiimaginary unitwith i2=-1rpathhere:inthecomplexplanegeometrical summationconnectionof geometricalobjects$()contour integral8Michael Beer, EngineeringMathematics
8 Symbol and Term List of Symbols A = {} ⊆ Meaning (if not self-explaining) x,A set subset the elements of A are given in the brace B domain formed by defined sets as a subset of a universe norm of vector x, of matrix A "length" of a vector or matrix |A| cardinality of set A "number of elements" in A complex numbers real part of c ∈ imaginary part of c ∈ imaginary unit with i2 = −1 path Re(c) Im(c) i Γ geometrical summation contour integral ⊕ connection of geometrical objects here: in the complex plane (.) Γ ∫ 0 Introduction Michael Beer, Engineering Mathematics
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程教学资源(作业习题)高等数学练习册(下,含参考答案).doc
- 《高等数学》课程教学资源(作业习题)高等数学练习册(上,含参考答案).doc
- 《高等数学》课程教学实验指导(下).doc
- 《高等数学》课程教学实验指导(上).doc
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 7 Fourier Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 4 Power Series Representation for Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 3 Power Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 2 Convergence Tests for Series of Constant.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 1 Definition and Properties of Infinite Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.9 Continuity of Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.8 Comparison of Infinitesimals.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.7 Two Remarkable Limits.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.6 Limit Theorems.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.5 Infinitesimal and Infinite Limit.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.4 The Limits of Sequences.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.3 The Limits of Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits 1.2 Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.10 Properties of Continuous Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.1 Preliminaries for Calculus.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用(习题课).ppt
- 《结构工程中的数学方法》课程教学课件(讲稿)Topic_2_Algebra.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Topic_1_Errors.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)matrix_inversion.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_system_structure.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_LU_decomp.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_gauss.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)example_power_method.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_eigenvalue.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)example_Jacobi_iteration.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_Cholesky.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)eigenvalue_multiple.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)example_GS_iteration.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)eigenvalue_polynomial.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)example_inverse_power_method.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Cholesky_alternative_procedure.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Cholesky_alternative.pdf
- 吉林大学数学院:《高等数学》课程教学资源(试卷习题)2012-13AI试卷(题目).doc
- 吉林大学数学院:《高等数学》课程教学资源(试卷习题)2012-13AI试卷(答案).doc
- 吉林大学数学院:《高等数学》课程教学资源(试卷习题)2012-13BI试卷(题目).doc
- 吉林大学数学院:《高等数学》课程教学资源(试卷习题)2012-13BI试卷(答案).doc