《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.5 Infinitesimal and Infinite Limit

Chapter1FunctionsLimitsand$ 1.5 Infinitesimal and InfiniteLimit
Chapter 1 Functions and Limits §1.5 Infinitesimal and Infinite Limit

L.Infinitesimal1.DefinitionDef:We say that f (x) is an infinitesimal as x -→a(or x -→o) iflim f(x) = 0(or lim f(x) = 0)e-S Def:f(x) isan infinitesimalas x→a ifV>0,38>0, s.t.0<x-a<8=f(x)<S 1.5 Infinitesimal and Infinite Iimit
§1.5 Infinitesimal and Infinite limit I. Infinitesimal Def: We say that f (x) is an infinitesimal as if lim ( ) = 0 (or lim ( ) = 0) → → f x f x x a x x → a(or x → ) 0, 0,s.t.0 x − a f (x) − Def: f (x) is an infinitesimal as if x → a 1. Definition

I. InfinitesimalQ:Infinitesimalisavery small number.O is an infinitesimal.An infinitesimalis a bounded function.is an infinitesimal.X2. The relationship between the infinitesimaland the limitTh: lim f(x)= A f(x)=A+α (α→0 as x→a)x>aS1.5 InfinitesimalandInfinite Iimit
§1.5 Infinitesimal and Infinite limit Q: ⚫ Infinitesimal is a very small number. ⚫ 0 is an infinitesimal. ⚫ An infinitesimal is a bounded function. ⚫ is an infinitesimal. x 1 I. Infinitesimal 2. The relationship between the infinitesimal and the limit Th: = = + → f x A f x A x a lim ( ) ( ) ( → 0 as x → a)

II. Infinite Limit1. DefinitionDef: We say that lim f(x) = oo ifVM>0,38>0, s.t. v0 Myty= f(x)M2.Geometricinterpretation---0xaa+oSa-MS 1.5 Infinitesimal and Infinite Iimit
§1.5 Infinitesimal and Infinite limit y a − a a + x o y = f (x) M − M II. Infinite Limit Def: We say that if = → lim f (x) x a M 0, 0,s.t.0 x − a f (x) M 1. Definition 2.Geometric interpretation

Il. Infinite Limit1.DefinitionDef: We say that lim f(x) = oo ifVM>0,38>0, s.t. v0MJty= f(x)M2.Geometricinterpretation0xa+oaM01S 1.5 Infinitesimal and Infinite Iimit
§1.5 Infinitesimal and Infinite limit y a − a a + x o y = f (x) M − M II. Infinite Limit 1. Definition 2.Geometric interpretation Def: We say that if = → lim f (x) x a M 0, 0,s.t.0 x − a f (x) M

Il. Infinite LimitQ: olim f(x) = co =→ f(x)is a very large number.-lim f(x) = oo = f(x)is not bounded.X→It its converse true?y=xsinx3.Relation between the two definitionsTh: If f(x) →0 as x → a(x →8),1then>0asx→a(x→8)f(x)S 1.5 Infinitesimal and Infinite Iimit
§1.5 Infinitesimal and Infinite limit y = x sin x II. Infinite Limit 3. Relation between the two definitions Th: 0 as ( ). ( ) 1 then If ( ) as ( ), → → → → → → x a x f x f x x a x Q: lim f (x) f (x) x a = → is a very large number. lim f (x) f (x) x a = → is not bounded. It its converse true?

II. Infinite Limit4.RelationtoAsymptotesHorizontalAsymptoteTheliney=aisahorizontal asymptoteofthegraphofy=f(x)if either lim f(x)=a or lim f(x)=a .Xx→+0VerticalAsymptoteThe line y = a is a vertical asymptote of the graph of y = f(x)if eitherlim f(x) = o0 or lim f(x)=oo :S1.5 InfinitesimalandInfinite Iimit
§1.5 Infinitesimal and Infinite limit 4. Relation to Asymptotes II. Infinite Limit Vertical Asymptote The line y = a is a vertical asymptote of the graph of if either = → + lim f (x) x a or lim ( ) = . → − f x x a y = f (x) Horizontal Asymptote The line y = a is a horizontal asymptote of the graph of if either lim f (x) a . x = →− f x a or x = →+ lim ( ) y = f (x)

II. Infinite LimitExample1Findthe vertical and horizontal asymptotes of the graph2xof f(x)=x-12x2xSolutionlimlim+8-8x-1t x-1x-1 x-1So x =1 is a vertical asymptote.2x= 2limx-→0 x-1So y=2is a horizontal asymptote.S 1.5Infinitesimal and Infinite limit
§1.5 Infinitesimal and Infinite limit II. Infinite Limit Example 1 Find the vertical and horizontal asymptotes of the graph of . 1 2 ( ) − = x x f x = + − → + 1 2 lim 1 x x x = − − → − 1 2 lim 1 x x x So is a vertical asymptote. x = 1 2 1 2 lim = → x − x x Solution So is a horizontal asymptote. y = 2
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.4 The Limits of Sequences.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.3 The Limits of Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits 1.2 Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.10 Properties of Continuous Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.1 Preliminaries for Calculus.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用(习题课).ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第六节 平均值.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第五节 功、水压力和引力.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第四节 平面曲线的弧长.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第三节 体积.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第二节 平面图形的面积.ppt
- 《高等数学》课程电子教案(PPT课件)第六章 定积分的应用 第一节 定积分的元素法.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分(习题课).ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第五节 积分表的使用.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第四节 几种特殊类型函数的积分.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第三节 分部积分法.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第二节 换元积分法.ppt
- 《高等数学》课程电子教案(PPT课件)第四章 不定积分 第一节 不定积分的概念与性质.ppt
- 《高等数学》课程教学大纲 Higher Mathematics(A).pdf
- 《数值计算》课程教学课件(讲稿)第3章 拟合与逼近(1/3).pdf
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.6 Limit Theorems.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.7 Two Remarkable Limits.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.8 Comparison of Infinitesimals.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 1 Functions and Limits §1.9 Continuity of Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 1 Definition and Properties of Infinite Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 2 Convergence Tests for Series of Constant.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 3 Power Series.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 4 Power Series Representation for Functions.ppt
- 《高等数学》课程电子教案(PPT课件)Chapter 12 Infinite series Sec 7 Fourier Series.ppt
- 《高等数学》课程教学实验指导(上).doc
- 《高等数学》课程教学实验指导(下).doc
- 《高等数学》课程教学资源(作业习题)高等数学练习册(上,含参考答案).doc
- 《高等数学》课程教学资源(作业习题)高等数学练习册(下,含参考答案).doc
- 《结构工程中的数学方法》课程教学课件(讲稿)symbols.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Topic_2_Algebra.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)Topic_1_Errors.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)matrix_inversion.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_system_structure.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_LU_decomp.pdf
- 《结构工程中的数学方法》课程教学课件(讲稿)intro_gauss.pdf