北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第二章 连续时间系统的时域分析 2.1 引言 2.2 微分方程式的建立与求解 2.3 起始点的跳变

第二章连续时间系统的时域分析 了微分方程式的建立与求解 了起始点的跳变 了零输入与零状态响应 冲激响应与阶跃响应 了卷积 大辱电信工祖院
北京邮电大学电信工程学院 1 第二章 连续时间系统的时域分析 微分方程式的建立与求解 起始点的跳变 零输入与零状态响应 冲激响应与阶跃响应 卷积

21引言 时域分析方法不涉及任何变换, 直接求解系统的微分积分方程。 了系统数学模型的时域表示」 (1)输入一输出描述 元n阶微分方程 (2)状态变量描述—n元联立一阶微分方程 此震邮电太辱电信工兽院
北京邮电大学电信工程学院 2 2.1 引言 时域分析方法不涉及任何变换, 直接求解系统的微分积分方程。 系统数学模型的时域表示 (1) 输入-输出描述 —— 一元 n 阶微分方程 (2) 状态变量描述 —— n 元联立一阶微分方程

2.2微分方程式的建立与求解 1,微分方程式的建立 对于电系统,依据是电网络的两个约束特性: 元件特性约束:即表征元件特性的关系式。 例如二端元件电阻、电感、电容各自的电压 与电流的关系等。 网络拓扑约束:由网络结构决定的电压、 电流约束关系。以基尔霍夫电压定律(KVL)和 基尔霍夫电流定律(KCL)表示。 此震邮电太辱电信工兽院
北京邮电大学电信工程学院 3 2.2 微分方程式的建立与求解 1. 微分方程式的建立 对于电系统,依据是电网络的两个约束特性: • 元件特性约束:即表征元件特性的关系式。 例如二端元件电阻、电感、电容各自的电压 与电流的关系等。 • 网络拓扑约束:由网络结构决定的电压、 电流约束关系。以基尔霍夫电压定律(KVL)和 基尔霍夫电流定律(KCL)表示

2,微分方程式的求解 经典法:前面电路分析课里已经讨论过, 但与6(有关的问题有待进一步解决 解方程双蒙法/ 零输入:可利用经典法求 零状态:利用卷积积分法求解 变换域法 此震邮电太辱电信工兽院
北京邮电大学电信工程学院 4 2. 微分方程式的求解 变换域法 零状态:利用卷积积分法求解 零输入:可利用经典法求 双零法 经典法:前面电路分析课里已经讨论过, 但与δ(t)有关的问题有待进一步解决. 解方程 {

2,微分方程式的求解 对于一个线性系统,其激励信号e()与响应函数() 之间的关系,可用下列形式的微分方程式來描述 dr(t) r(t) dr(t) +∴+ +C rt) d t d t e E E d e(t) +…+E d t t 对于线性时不变系统,组成系统的元件是参数恒 定的线性元件,因此式中系数C、E都是常数。上式 就是一个常系数的n阶线性常微分方程。 此震邮电太辱电信工兽院
北京邮电大学电信工程学院 5 对于一个线性系统,其激励信号e(t)与响应函数r(t) 之间的关系,可用下列形式的微分方程式来描述 对于线性时不变系统,组成系统的元件是参数恒 定的线性元件,因此式中系数C、E都是常数。上式 就是一个常系数的 n 阶线性常微分方程。 2. 微分方程式的求解 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 0 1 1 1 1 0 1 E e t dt de t E dt d e t E dt d e t E C r t dt dr t C dt d r t C dt d r t C m m m m m m n n n n n n = + + + + + + + + − − − − − − L L

2.微分方程式的求解 经典解法中,方程的完全解由两部分组成: 齐次解和特解 当式中的e(t)及其各阶导数为零时,方程的解为齐次解。 dr((((((t). r( +…+C dr(t) + +Cr(t)=0 齐次解的形式为Ae的函数组合。注意重根的处理。 特解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数定 出特解。 此震邮电太辱电信工兽院
北京邮电大学电信工程学院 6 经典解法中,方程的完全解由两部分组成: 齐次解和特解. 当式中的e(t) 及其各阶导数为零时,方程的解为齐次解。 齐次解的形式为 的函数组合。 Aeαt 注意重根的处理。 ( ) 0 ( ) ( ) ( ) 1 1 1 0 + 1 + + − + = − − C r t dt dr t C dt d r t C dt d r t C n n n n n n L 特解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数定 出特解。 2. 微分方程式的求解

几种典型激励函数相应的特解 激励函数e() 响应函数r(的特解 E(常数) B(常数) P Bt"+B2"+…+B2t+Bn Be cOSla B, oslo t+B, sin(o sIn@ t'e sino t )(+B+…+B(+Bn)co(o t'e oslo pr+d ++d d ou k"sin(ot
几种典型激励函数相应的特解 激励函数 e ( t) 响应函数 r ( t)的特解 E (常数 ) B (常数 ) B cos (ω t ) B sin (ω t ) 1 + 2 p t 1 1 1 2 + − + + + p + p p p B t B t L B t B t e α t Be α ( ) ( ) ( ) D t D t D t D e ( )t B t B t B t B e t t p p p p t p p p p ω ω α α sin cos 1 1 1 2 1 1 1 2 + − + − + + + + + + + + + L L t e ( )t p t ω α cos t e ( )t p t ω α sin sin (ω t ) cos (ω t )

2.微分方程式的求解 例题:求微分方程的齐次解 dr(t,dFr(t), u dr(t) 6-)+12n(t)=e(t) 解:特征方程为: a3+7a2+16a+12=0 (+2)(a+3)=0 特征根Q=-2(重根),a=-3 齐次解为A+Ae+Ae 此震邮电太辱电信工兽院
北京邮电大学电信工程学院 8 2. 微分方程式的求解 例题:求微分方程的齐次解 12 ( ) ( ) ( ) 16 ( ) 7 ( ) 2 2 3 3 r t e t dt dr t dt d r t dt d r t + + + = t t t Ate A e A e 3 3 2 2 2 1 − − − + + α = −(重根), 2 α=-3 ( 2) ( 3) 0 7 16 12 0 2 3 2 + + = + + + = α α α α α 解:特征方程为: 特征根 齐次解为

例:给定微分方程式0),d1(,m()0+0 dt dt dt 如果已知:()()=t;(2)()=e,分别求两种情况 下此方程的特解。 解:()将e)=代入方程右端得到t+,为使等式两端 平衡,试选特解函数式 B t+Bt+B 这里,B,B2,B3为待定系数。将此式代入方程得到 3B2+(4B1+3B2)t+(2B+2B2+3B)=2+2
如果已知: 分别求两种情况 下此方程的特解。 例:给定微分方程式 ( ) ( ) ( ) ( ) e( )t t e t r t t r t t r t + + = + d d 3 d d 2 d d 2 2 ( ) 1 ( ) ; ( ) ( ) , 2 t e t = t 2 e t = e 平衡,试选特解函数式 ( 1) () 将 e t = t 2代入方程右端 ,得到 t 2 + 2 t ,为使等式两端 3 B t ( 4 B 3 B ) t ( 2 B 2 B 3 B ) t 2 t 2 1 2 1 2 3 2 1 + + + + + = + 这里 , B 1 , B 2 , B 3为待定系数。 将此式代入方程得到 ( ) 2 3 2 rp t = B 1 t + B t + B 解 :

等式两端各对应幂次的系数应相等,于是有 3B,=1 联解得到 4B1+3B,=2 2B1+2B2+3B3=0 10 所以,特解为B302903-27 t+=t 3927
等式两端各对应幂次的系数应相等,于是有 联解得到 所以,特解为 ⎪ ⎩ ⎪ ⎨ ⎧ + + = + = = 2 2 3 0 4 3 2 3 1 1 2 3 1 2 1 B B B B B B 27 10 , 9 2 3 1 B 1 = , B 2 = B 3 = − ( ) 2710 9 2 3 1 2 rp t = t + t −
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第一章 序论 1.5 信号的分解 1.6 系统模型及其划分 1.7 线性时不变系统(LTI)1.8 系统分析方法.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第一章 序论 1.3 信号的运算 1.4 奇异信号.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第一章 序论 1.1 信号与系统概述 1.2 信号的描述及分类.pdf
- 《电子工程师手册》学习资料(英文版)Communications.pdf
- 《电子工程师手册》学习资料(英文版)Energy.pdf
- 《电子工程师手册》学习资料(英文版)Electrical Effects and Devices.pdf
- 《电子工程师手册》学习资料(英文版)Electromagnetics.pdf
- 《电子工程师手册》学习资料(英文版)Electronics.pdf
- 《电子工程师手册》学习资料(英文版)Signal Processing.pdf
- 《电子工程师手册》学习资料(英文版)Mathematics, Symbols, and Physical Constants.pdf
- 《电子工程师手册》学习资料(英文版)Biomedical Systems.pdf
- 《电子工程师手册》学习资料(英文版)Systems.pdf
- 《电子工程师手册》学习资料(英文版)Computer Engineering.pdf
- 《电子工程师手册》学习资料(英文版)Digital Devices.pdf
- 《模拟电子线路》课程教学资源:电子教案(电子技术、数字部分).doc
- 《WEEE & RoHS Seminar》讲座(双语版).ppt
- 华为产品维护资料汇编:信号与通信系统教程——通信技术概论.pdf
- 成都信息工程大学:《EDA技术及应用》PPT教程课件讲义(王建波).ppt
- 海南大学:《通信原理》课程教学资源(教案讲义)第四章 模拟调制系统.doc
- 海南大学:《通信原理》课程教学资源(PPT课件讲稿)第四章 模拟调制系统(4.3)角度调制原理及抗噪性能.ppt
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第二章 连续时间系统的时域分析 2.4 零输入和零状态响应 2.5 冲激响应与阶跃响应.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第二章 连续时间系统的时域分析 2.6 卷积 2.7 卷积的性质.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第三章 傅里叶变换 3.1 周期信号的傅立叶级数分析 3.2 典型周期信号的傅立叶级数 3.3 傅立叶变换 3.4 典型非周期信号的频谱 3.5 冲激函数和阶跃函数的傅立叶变换.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第三章 傅里叶变换 3.6 傅立叶变换的基本性质 3.7 卷积定理.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第三章 傅里叶变换 3.8 周期信号的傅立叶变换 3.9 抽样信号的傅立叶变换 3.10 抽样定理.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)6.3 信号的正交函数分解 6.4 用完备正交集表示信号.pdf
- 北京邮电大学:《信号与系统》课程教学资源(课件讲稿)第四章 拉普拉斯变换、连续时间系统的s域分析.pdf
- 北京邮电大学:《信号与系统》课程教学资源(PPT课件讲稿)知识点题解.ppt
- 北京邮电大学:《信号与系统》课程教学资源(试卷习题)第二章习题知识点题解.doc
- 《数字电路》课程电子教案(PPT课件讲稿)第一章 绪论.ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第二章 逻辑函数及其简化(1/2).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第二章 逻辑函数及其简化(2/2).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第三章 集成逻辑门(2/5).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第三章 集成逻辑门(3/5).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第三章 集成逻辑门(4/5).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第三章 集成逻辑门(5/5).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第四章 组合逻辑电路(1/3).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第四章 组合逻辑电路(2/3).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第四章 组合逻辑电路(3/3).ppt
- 《数字电路》课程电子教案(PPT课件讲稿)第五章 集成触发器.ppt