西安电子科技大学:《工程优化方法》课程教学资源(PPT课件讲稿)第一章 基础知识、第二章 基础知识(任课教师:周水生)

第一章基础知识 ●背景知识 ●最优化问题举例 ●优化问题的数学模型及其分类 ●最优解与极值点
⚫ 背景知识 ⚫ 最优化问题举例 ⚫ 优化问题的数学模型及其分类 ⚫ 最优解与极值点 第一章 基础知识

§1背景知识 最优化技术是一门较新的学科分支。它是在上世纪五十年 代初在电子计算机广泛应用的推动下才得到迅速发展,并成为 门直到目前仍然十分活跃的新兴学科。最优化所研究的问题 是在一定的限制条件下,在众多的可行方案中怎样选择最合理 的一种方案以达到最优目标。 将达到最优目标的方案称为最优方案或最优决策,搜寻最 优方案的方法称为最优化方法,关于最优化方法的数学理论称 为最优化理论。 最优化问题至少有两要素:一是可能的方案;二是要追求 的目标。后者是前者的函数。如果第一要素与时间无关就称为 静态最优化问题,否则称为动态最优化问题。 本科程专门讲授静态最优化问题
§1 背景知识 最优化技术是一门较新的学科分支。它是在上世纪五十年 代初在电子计算机广泛应用的推动下才得到迅速发展,并成为 一门直到目前仍然十分活跃的新兴学科。最优化所研究的问题 是在一定的限制条件下,在众多的可行方案中怎样选择最合理 的一种方案以达到最优目标。 将达到最优目标的方案称为最优方案或最优决策,搜寻最 优方案的方法称为最优化方法,关于最优化方法的数学理论称 为最优化理论。 最优化问题至少有两要素:一是可能的方案;二是要追求 的目标。后者是前者的函数。如果第一要素与时间无关就称为 静态最优化问题,否则称为动态最优化问题。 本科程专门讲授静态最优化问题

最优化技术应用范围十分广泛,在我们日常生活中,在工农 业生产、社会经济、国防、航空航天工业中处处可见其用途。 比如:结构最优设计、电子器件最优设计、光学仪器最优设计 化工工程最优设计、运输方案、机器最优配备、油田开发、水库 调度、饲料最优配方、食品结构优化等等。 最优化技术工作被分成两个方面,一是由实际产生或科技问 题形成最优化的数学模型,二是对所形成的数学问题进行数学加 工和求解。对于第二方面的工作,目前已有一些较系统成熟的资 料,但对于第一方面工作即如何由实际问题抽象出数学模型,目 前很少有系统的资料,而这一工作在应用最优化技术解决实际问 题时是十分关键的基础,没有这一工作,最优化技术将成为无水 之源,难以健康发展
最优化技术应用范围十分广泛,在我们日常生活中,在工农 业生产、社会经济、国防、航空航天工业中处处可见其用途。 比如:结构最优设计、电子器件最优设计、光学仪器最优设计、 化工工程最优设计、运输方案、机器最优配备、油田开发、水库 调度、饲料最优配方、食品结构优化等等。 最优化技术工作被分成两个方面,一是由实际产生或科技问 题形成最优化的数学模型,二是对所形成的数学问题进行数学加 工和求解。对于第二方面的工作,目前已有一些较系统成熟的资 料,但对于第一方面工作即如何由实际问题抽象出数学模型,目 前很少有系统的资料,而这一工作在应用最优化技术解决实际问 题时是十分关键的基础,没有这一工作,最优化技术将成为无水 之源,难以健康发展

因此,在学习本科程时要尽可能了解如何由实际问 题形成最优化的数学模型。为了便于大家今后在处理实 际问题时建立最优化数学模型,下面我们先把有关数学 模型的一些事项作一些说明。 数学模型:对现实事物或问题的数学抽象或描述 建立数学模型时要尽可能简单,而且要能完整地描述所 研究的系统,但要注意到过于简单的数学模型所得到的结果 可能不符合实际情况,而过于详细复杂的模型又给分析计算 带来困难。因此,具体建立怎样的数学模型需要丰富的经验 和熟练的技巧。即使在建立了问题的数学模型之后,通常也 必须对模型进行必要的数学简化以便于分析、计算
因此,在学习本科程时要尽可能了解如何由实际问 题形成最优化的数学模型。为了便于大家今后在处理实 际问题时建立最优化数学模型,下面我们先把有关数学 模型的一些事项作一些说明。 数学模型: 对现实事物或问题的数学抽象或描述。 建立数学模型时要尽可能简单,而且要能完整地描述所 研究的系统,但要注意到过于简单的数学模型所得到的结果 可能不符合实际情况,而过于详细复杂的模型又给分析计算 带来困难。因此,具体建立怎样的数学模型需要丰富的经验 和熟练的技巧。即使在建立了问题的数学模型之后,通常也 必须对模型进行必要的数学简化以便于分析、计算

般的模型简化工作包括以下几类: (1)将离散变量转化为连续变量 (2)将非线性函数线性化。 (3)删除一些非主要约束条件
一般的模型简化工作包括以下几类: (1)将离散变量转化为连续变量。 (2)将非线性函数线性化。 (3)删除一些非主要约束条件

建立最优化问题数学模型的三要素 (1)决策变量和参数。 决策变量是由数学模型的解确定的未知数。参数表示 系统的控制变量,有确定性的也有随机性的。 (2)约束或限制条件。 由于现实系统的客观物质条件限制,模型必须包括把 决策变量限制在它们可行值之内,即约束条件,而这通常 是用约束的数学函数形式来表示的 (3)目标函数。 这是作为系统决策变量的一个数学函数来衡量系统的 效率,即系统追求的目标
建立最优化问题数学模型的三要素: (1)决策变量和参数。 决策变量是由数学模型的解确定的未知数。参数表示 系统的控制变量,有确定性的也有随机性的。 (2)约束或限制条件。 由于现实系统的客观物质条件限制,模型必须包括把 决策变量限制在它们可行值之内,即约束条件,而这通常 是用约束的数学函数形式来表示的。 (3)目标函数。 这是作为系统决策变量的一个数学函数来衡量系统的 效率,即系统追求的目标

例 对于规划问题, Find X=(ix2,.,xm, m) Min.i=f(X) s.t.,(X)≤O,j=12,…,J m只能取正整数 其中,f(X)与g,(X)均为非线性函数。 请问,这种设计变量数随时可变的问题如何求解?
例

§2最优化问题举例 最优化在物质运输、自动控制、机械设计、采矿冶金、经 济管理等科学技术各领域中有广泛应用。下面举几个专业性不 强的实例。 例1.把半径为1的实心金属球熔化后,铸成一个实心圆柱体, 问圆柱体取什么尺寸才能使它的表面积最小? 解:决定圆柱体表面积大小有两个决策变量:圆柱体底面半 径r、高h。 问题的约束条件是所铸圆柱体重量与球重相等。即 Trh p 4-3 R·p p为金属比重p≠0.R=1
§2 最优化问题举例 最优化在物质运输、自动控制、机械设计、采矿冶金、经 济管理等科学技术各领域中有广泛应用。下面举几个专业性不 强的实例。 例1. 把半径为1的实心金属球熔化后,铸成一个实心圆柱体, 问圆柱体取什么尺寸才能使它的表面积最小? 解:决定圆柱体表面积大小有两个决策变量:圆柱体底面半 径r、高h。 问题的约束条件是所铸圆柱体重量与球重相等。即 2 3 4 3 r h R = 为金属比重. 0.R =1

即 丌Fhs 即 h 0 问题追求的目标是圆柱体表面积最小。即 2mh+2丌r min(2Trh+2Tr 则得原问题的数学模型 e.t. r-h 0 st→> Subject to.(以….条件) 利用在高等数学中所学的 lagrange乘子法可求解本问题 L(x,b,4)=27mh+2x2-21h 4 分别对rh,求偏导数,并令其等于零有:
即 , 即 问题追求的目标是圆柱体表面积最小。即 min 则得原问题的数学模型: s.t. Subject to.(以…为条件) 利用在高等数学中所学的Lagrange乘子法可求解本问题 分别对r, h,λ求偏导数,并令其等于零.有: 3 2 4 r h = 0 3 2 4 r h − = ( ) 2 2rh + 2 r ( ) 2 2 min 2 2 4 . . 0 3 rh r s t r h + − = ( ) 2 2 4 , , 2 2 3 L r h rh r r h = + − −

OL 2Th+4Tr-2rh=0 OL 2nr-r2=0 →h=2r ah OL h+-=0 → h=2 此时圆柱体的表面积为6
此时圆柱体的表面积为 2 2 2 4 2 0 2 0 2 4 0 3 L h r rh r L r r h r h L r h = + − = = − = = = − + = . 3 2 r = 3 3 3 2 h = 2 3 2 3 2 6
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)各章知识点总结(共八章).pptx
- 《高等数学》课程教学课件(PPT讲稿)中值定理及导数的应用(习题课).ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)第十一章 格与布尔代数(主讲:周德宇).pptx
- 香港大学:博弈高手——浅论约翰•纳殊的诺贝尔奖得奖理论.ppt
- 《概率论与数理统计》课程教学资源(PPT课件讲稿)第六章 样本及抽样分布.ppt
- 《数学建模》课程电子教案(PPT课件讲稿)初等模型.ppt
- 北京师范大学:《高等数学》课程教学资源(PPT课件讲稿)第二章 实数理论.ppt
- 《数学建模》课程教学资源(PPT课件)建模概论与初等模型.ppt
- 西安电子科技大学:《运筹学》课程教学资源(PPT课件讲稿)网络计划技术(统筹法).ppt
- 《数学建模》课程教学资源(PPT课件讲稿)第六章 多元时间序列分析.ppt
- 《数学分析》课程教学资源(PPT课件讲稿)泰勒公式与极值问题.ppt
- 山东大学:《概率统计》课程PPT教学课件(讲稿)第7章 回归分析和方差分析(7.1)一元线性回归.ppt
- 《复变函数与积分变换》课程教学资源(PPT课件讲稿)第四章 解析函数的级数表示(The representation of power series of analytic function).ppt
- 《数学分析》课程教学资源(PPT课件讲稿)第二章 单变量微分学(题解).ppt
- 《高等数学》课程教学资源(PPT习题课)多元函数微分学、二重积分.ppt
- 华东理工大学:应用概率统计(PPT课件讲稿)独立性及其应用、离散型随机变量及其分布.ppt
- 傅立叶变换的性质(PPT课件讲稿)Properties of Fourier Transform.ppt
- 数学软件Matlab(PPT讲稿)二维平面作图、三维空间作图.ppt
- 《线性代数》课程教学资源(PPT课件讲稿)求解线性方程组、特征值、特征向量的计算.pptx
- 《数理统计》课程教学课件(PPT讲稿)第一章 统计推断准备.ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)第二章 命题逻辑等值演算.ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)第一部分 数理逻辑 第1章 命题逻辑基本概念.ppt
- 《离散数学》课程教学课件(PPT讲稿)谓词逻辑初步与推理规则.pptx
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第一章 概率论的基本概念(主讲教师:董庆宽).pptx
- 《概率论》课程电子教案(PPT教学课件)第三章 多维随机变量及其分布.ppt
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第八章 假设检验.ppt
- 西安电子科技大学:《概率论与数理统计》课程教学资源(PPT课件讲稿)第八章 假设检验.ppt
- 浙江师范大学:On-line list colouring of graphs.ppt
- 《最优化方法》课程教学课件(PPT讲稿)第3讲 凸集、凸函数、凸规划.ppt
- 东南大学:《离散数学》课程教学资源(PPT课件讲稿)第七章 二元关系.ppt
- 辽宁师范大学:《高等数学》课程教学资源硕士研究生入学考试大纲.doc
- 《电动力学》课程教学课件(PPT讲稿)矢量分析与数学准备.pptx
- 《代数结构》课程教学习题解答.pptx
- 《数学分析》课程教学资源(考研大纲).pdf
- 香港科技大学:《微积分》课程教学资源(讲义)微积分 Calculus(共四部分,英文版).pdf
- 浙江工商大学:《数学建模》课程教学课件(PPT讲稿)初等模型.ppt
- 《数学模型》课程教学资源(PPT课件讲稿)第二章 初等模型.ppt
- 西安交通大学:多期风险度量与多阶段投资组合选择问题(博士学位论文)Multi-period Risk Measures and Multi-stage Portfolio Selection Problems.pdf
- 《数值分析》课程教学参考书籍:《Numerical Analysis》PDF电子书(Youngstown State University,Richard L. Burden,NINTH EDITION).pdf
- 山东大学:博弈论(入门介绍).pdf