中国高校课件下载中心 》 教学资源 》 大学文库

《多尺度生物传输》课程教学大纲 Multi-scale Biotransport

文档信息
资源类别:文库
文档格式:DOC
文档页数:9
文件大小:77.5KB
团购合买:点击进入团购
内容简介
《多尺度生物传输》课程教学大纲 Multi-scale Biotransport
刷新页面文档预览

西安交通大学研究生课程简介课程编码:BIOL711313课程名称:(中)多尺度生物传输课程名称:(英)Multi-scaleBiotransport学分数:2课内总学时数:40实验学时数:8(计算机模拟)课程内容简介:随着激光、微波及相关技术的发展,各种针对皮肤疾病和损伤(皮肤癌、烧伤、纹身去除等)、牙科疾病(龋齿预防与治疗、牙本质过敏治疗)以及肿瘤的新的热疗方法不断涌现。热疗(温度)方法的目的是引入热效应使生物组织发生一系列的物理、化学变化,从而达到治疗的目的,然而热疗过程中产生的热损伤和热疼痛等问题严重影响临床医学治疗效果。最理想的治疗方案应具有效果佳而副作用最小的特点,但由于热疗疗效受生物组织的传热学、力学、生物学和神经反应等多方面复杂因素所决定,阻碍了临床热疗方法的发展。因此,针对与热疗密切相关的多尺度生物传输与神经生理学问题,课程教学将围绕以下主要内容展开:1)多尺度生物传输概念;2)两种典型人体软组织(皮肤)和硬组织(牙齿)的解剖结构及相应的神经分布特点;3)生物组织热-力耦合及神经

西安交通大学研究生课程简介 课程编码: BIOL711313 课程名称:(中)多尺度生物传输 课程名称:(英)Multi-scale Biotransport 学分数: 2 课内总学时数:40 实验学时数: 8 (计算机模拟) 课程内容简介:随着激光、微波及相关技术的发展,各 种针对皮肤疾病和损伤(皮肤癌、烧伤、纹身去除等)、 牙科疾病(龋齿预防与治疗、牙本质过敏治疗)以及肿瘤 的新的热疗方法不断涌现。热疗(温度)方法的目的是引 入热效应使生物组织发生一系列的物理、化学变化,从而 达到治疗的目的,然而热疗过程中产生的热损伤和热疼痛 等问题严重影响临床医学治疗效果。最理想的治疗方案应 具有效果佳而副作用最小的特点,但由于热疗疗效受生物 组织的传热学、力学、生物学和神经反应等多方面复杂因 素所决定,阻碍了临床热疗方法的发展。因此,针对与热 疗密切相关的多尺度生物传输与神经生理学问题,课程教 学将围绕以下主要内容展开:1)多尺度生物传输概念;2) 两种典型人体软组织(皮肤)和硬组织(牙齿)的解剖结 构及相应的神经分布特点;3)生物组织热-力耦合及神经

生理学实验基础:4)冷热剩激下人体组织热一力耦合、热损伤本构关系;5)Hodgkin-Huxley电神经生理学模型及理论基础:6)冷热刺激引发疼痛信号及大脑对疼痛信号的感知等的统一模型理论基础;7)多尺度生物传输与神经生理学研究应用实例。从事相关生物物理或生物数学研究的研究生将从课程中学习到多尺度生物传输相关的数理建模及验证性实验设计的基础知识。医学相关专业的研究生将掌握采用数理模型对临床热治疗方法进行预测与优化临床诊疗方法,为临床实践提供参考。先修课:数值分析参考书目:1.F.Xu TJ.Lu,“Introduction to Skin Biothermomechanics and Thermal Pain", SpringerChina, 2010Xu, F, 2008, "Skin biothermomechanics and thermal pain," PhD Thesis,2.University ofCambridge, Cambridge,UK.林敏,牙组织传热及冷/热疼痛机制的生物热-力耦合学研究.博士学位论文,3.西安交通大学4.姜宗来、樊瑜波编著《生物力学一一从基础到前沿》,科学出版社,20075. Xu, F., Lu, T J., and Seffen, K. A., Skin thermal pain modeling. a holisticmethod," Journal of Thermal Biology,2008,33(4):223-237.6.Xu, F., Seffen, K.A.,and Lu, T J., Non-Fourier analysis of skinbiothermomechanics.International Journal ofHeatand Mass Transfer,200851:2237-2259.7.Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modelling of nociceptor transductionin skinthermal pain sensation.Journal of Biomechanical Engineering,2008130(4):1-13.8. Xu, F., Wen, T., Seffen, K. A., and Lu, T J., Biothermomechanics of skin tissueJournaloftheMechanicsandPhysicsofSolids,2008,56(5):1852-1884Xu, F., Lu, T. J., and Seffen, K. A., Thermally-induced change in the relaxation9.behaviour of skin tissue. ASME Journal of Biomechanical Engineering.2008

生理学实验基础;4)冷热刺激下人体组织热-力耦合、热 损伤本构关系;5)Hodgkin-Huxley 电神经生理学模型及 理论基础;6)冷热刺激引发疼痛信号及大脑对疼痛信号 的感知等的统一模型理论基础;7)多尺度生物传输与神 经生理学研究应用实例。从事相关生物物理或生物数学研 究的研究生将从课程中学习到多尺度生物传输相关的数 理建模及验证性实验设计的基础知识。医学相关专业的研 究生将掌握采用数理模型对临床热治疗方法进行预测与 优化临床诊疗方法,为临床实践提供参考。 先修课: 数值分析 参考书目: 1. F. Xu, T.J. Lu, “Introduction to Skin Biothermomechanics and Thermal Pain”, Springer, China, 2010 2. Xu, F., 2008, "Skin biothermomechanics and thermal pain," PhD Thesis, University of Cambridge, Cambridge, UK. 3. 林敏,牙组织传热及冷/热疼痛机制的生物热-力耦合学研究. 博士学位论文, 西安交通大学 4. 姜宗来、樊瑜波编著《生物力学——从基础到前沿》,科学出版社,2007 5. Xu, F., Lu, T. J., and Seffen, K. A., Skin thermal pain modeling. a holistic method," Journal of Thermal Biology, 2008, 33(4):223-237. 6. Xu, F., Seffen, K. A., and Lu, T. J., Non-Fourier analysis of skin biothermomechanics. International Journal of Heat and Mass Transfer, 2008, 51:2237-2259. 7. Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modelling of nociceptor transduction in skin thermal pain sensation. Journal of Biomechanical Engineering, 2008, 130(4):1-13. 8. Xu, F., Wen, T., Seffen, K. A., and Lu, T. J., Biothermomechanics of skin tissue. Journal of the Mechanics and Physics of Solids, 2008, 56(5):1852-1884. 9. Xu, F., Lu, T. J., and Seffen, K. A., Thermally-induced change in the relaxation behaviour of skin tissue. ASME Journal of Biomechanical Engineering. 2008

130 (4), 1-131o. Xu, F., Lu, T. J., Seffen, K. A., and Ng, E. Y. K., Bioheat transfer of skin tissueApplied Mechanics Review,2009, 62(5), 05080111. Lin, M, Luo, Z.Y., Bai, B.F., Xu,F., Lu,TJ. Fluid mechanics in dentinal microtubulesprovides mechanistic insights into the difference between hot and cold dental pain, PLosONE,2011, 6(3):e18068.12.Lin, M., Liu, S.B., Niu, L., Feng,X., Lu,T.J.Analysis of thermal-induced dentinal fluid flowand its implications in dental thermal pain.ArchivesofOral Biology,201l,56(9)846-85613. Lin, M, Luo, Z.Y., Bai, B.F, Xu,F., Lu,T.J.Fluid dynamics analysis of shear stress on nerveendings in dentinal microtubule:Aquantitative interpretation of hydrodynamic theoryfortooth pain. Journal of Mechanics in Medicine and Biology, 2011,11(1):205-219.14.Lin, M.,Zai,X.,S.Q.Wang.Wang,ZJ., Xu,F., Lu, TJ.Influences of Supra-physiologicalTemperatures on Microstructure and Mechanical Properties of Skin Tissue. MedicalEngineering& Physics, 2011, DO1:10.1016/j.medengphy.2011.12.00315.Lin,M.,Xu.F.Lu,TJ.,Bai,B.F.Areviewof heattransferinhumantooth-Experimentalcharacterization and mathematical modeling.Dental Materials, 2010,26(6):501-51316.徐峰,林敏,卢天健,Seffen,K.A,Ng,E.Y.K皮肤生物热传导模型综述。中国力学文摘,2010,24(2):1-3817.林敏,刘少宝,牛林,徐峰卢天健,牙齿热疼痛流体动力学假说的证实与完善,西安交通大学学报,2011,45(12):118-122.执笔人:徐峰、林敏审定人:张建保

130 (4), 1-13 10.Xu, F., Lu, T. J., Seffen, K. A., and Ng, E. Y. K., Bioheat transfer of skin tissue. Applied Mechanics Review, 2009, 62(5), 050801 11.Lin, M., Luo, Z.Y., Bai, B.F., Xu,F., Lu,T.J. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS ONE, 2011, 6(3): e18068. 12.Lin, M., Liu, S.B., Niu, L., Feng, X., Lu,T.J. Analysis of thermal-induced dentinal fluid flow and its implications in dental thermal pain. Archives of Oral Biology, 2011, 56(9) 846-856. 13.Lin, M., Luo, Z.Y., Bai, B.F., Xu,F., Lu,T.J. Fluid dynamics analysis of shear stress on nerve endings in dentinal microtubule: A quantitative interpretation of hydrodynamic theory for tooth pain. Journal of Mechanics in Medicine and Biology, 2011,11(1):205–219. 14.Lin, M., Zai, X., S.Q. Wang, Wang, Z.J., Xu, F., Lu, T.J. Influences of Supra-physiological Temperatures on Microstructure and Mechanical Properties of Skin Tissue. Medical Engineering & Physics, 2011, DOI:10.1016/j.medengphy.2011.12.003 15.Lin, M., Xu,F., Lu,T.J., Bai, B.F. A review of heat transfer in human tooth—Experimental characterization and mathematical modeling. Dental Materials, 2010,26(6):501-513. 16.徐峰,林敏,卢天健,Seffen, K.A., Ng, E.Y.K. 皮肤生物热传导模型综述. 中国力学文 摘, 2010,24(2):1-38. 17.林敏,刘少宝,牛林,徐峰,卢天健. 牙齿热疼痛流体动力学假说的证实与完善,西安交通大 学学报,2011,45(12):118-122. 执笔人:徐峰、林敏 审定人: 张建保

Course Code:Course Name:Multi-scale BiotransportCredit:2Teaching Hours:40ExperimentalHours:8Introduction:Advances in laser, microwave and similar technologies in medicine have ledto recent developments of thermal treatments for disease and injury, involving skinand tooth tissues. In spite of the widespread use of thermal therapies, they do not drawupon the detailed understanding of the biotransport processes at multi-scale (e.g.,biothermomechanical-neurophysiological behavior), for none exists to date, eventhough each behavioral facet is somewhat established and understood. In view of thisdilemma,a newresearch area emerges,whichisthesubject of thiscourse“Multi-scale Biotransport.This area is highly interdisciplinary, involving thesubjects of engineering, biology and neurophysiology. This course is focused on theintroduction of this new research area.According to the schematic relationshipbetweentheareasinvolved,thiscourseismainlydivided intoSevenPartsPARTI.Introductionofmulti-scalebiotransportPARTII. Microstructure and nerve innervations of skin and tooth tissues;PART IIl. Experimental basis of tissue bioheat transfer and resultingthermomechanics and thermal damage,PARTIV.Theoretical and numerical approaches for tissue bioheat transfer andresulting biothermomechanics and thermal damage

Course Code: Course Name: Multi-scale Biotransport Credit: 2 Teaching Hours: 40 Experimental Hours: 8 Introduction: Advances in laser, microwave and similar technologies in medicine have led to recent developments of thermal treatments for disease and injury, involving skin and tooth tissues. In spite of the widespread use of thermal therapies, they do not draw upon the detailed understanding of the biotransport processes at multi-scale (e.g., biothermomechanical-neurophysiological behavior), for none exists to date, even though each behavioral facet is somewhat established and understood. In view of this dilemma, a new research area emerges, which is the subject of this course: ‘Multi-scale Biotransport’. This area is highly interdisciplinary, involving the subjects of engineering, biology and neurophysiology. This course is focused on the introduction of this new research area. According to the schematic relationship between the areas involved, this course is mainly divided into Seven Parts: PART I. Introduction of multi-scale biotransport PART II. Microstructure and nerve innervations of skin and tooth tissues; PART III. Experimental basis of tissue bioheat transfer and resulting thermomechanics and thermal damage; PART IV. Theoretical and numerical approaches for tissue bioheat transfer and resulting biothermomechanics and thermal damage;

PART V. Introduction of Hodgkin-Huxley model;PARTVI.Holistic model fortissue thermal pain sensations;PARTVII.Examples and applications of multi-scale biotransportThe course is multidisciplinary suitable for students across several subjectareas. These areas involve biophysics, biomathematics, biomedical engineering aswell as clinics.Required Course in Advance: numerical analysisReferences:1.F.Xu, TJ.Lu,“Introduction to Skin Biothermomechanics and Thermal Pain, Springer,China, 20102.Xu,F.,2008, "Skin biothermomechanics and thermal pain,"PhD Thesis,University ofCambridge,Cambridge,UK3.林敏,牙组织传热及冷/热疼痛机制的生物热-力耦合学研究.博士学位论文,西安交通大学姜宗来、樊瑜波编著《生物力学一一从基础到前沿》,科学出版社,20074.5.Xu, F., Lu, T. J., and Seffen, K. A., Skin thermal pain modeling. a holisticmethod," Journal of Thermal Biology, 2008, 33(4):223-237.Xu, F., Seffen, K. A., and Lu, T. J., Non-Fourier analysis of skin6.biothermomechanics. International Journal of Heat and Mass Transfer, 2008,51:2237-2259Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modelling of nociceptor transduction7.in skin thermal pain sensation.Journal of Biomechanical Engineering,2008130(4):1-13.8. Xu, F., Wen, T., Seffen, K. A., and Lu, T. J., Biothermomechanics of skin tissue.Journal of the Mechanics and Physics of Solids, 2008, 56(5):1852-1884.Xu, F., Lu, T. J., and Seffen, K. A., Thermally-induced change in the relaxation9.behaviour of skin tissue. ASME Journal of Biomechanical Engineering. 2008130 (4), 1-131o. Xu, F., Lu, T. J., Seffen, K. A., and Ng, E. Y. K., Bioheat transfer of skin tissue.AppliedMechanicsReview,2009,62(5),0508011l. Lin, M, Luo, Z.Y, Bai, B.F., Xu,F., Lu,TJ. Fluid mechanics in dentinal microtubulesprovides mechanistic insights into the difference between hot and cold dental pain. PLoS

PART V. Introduction of Hodgkin-Huxley model; PART VI. Holistic model for tissue thermal pain sensations; PART VII. Examples and applications of multi-scale biotransport The course is multidisciplinary suitable for students across several subject areas. These areas involve biophysics, biomathematics, biomedical engineering as well as clinics. Required Course in Advance: numerical analysis References: 1. F. Xu, T.J. Lu, “Introduction to Skin Biothermomechanics and Thermal Pain”, Springer, China, 2010 2. Xu, F., 2008, "Skin biothermomechanics and thermal pain," PhD Thesis, University of Cambridge, Cambridge, UK. 3. 林敏,牙组织传热及冷/热疼痛机制的生物热-力耦合学研究. 博士学位论文, 西安交通大学 4. 姜宗来、樊瑜波编著《生物力学——从基础到前沿》,科学出版社,2007 5. Xu, F., Lu, T. J., and Seffen, K. A., Skin thermal pain modeling. a holistic method," Journal of Thermal Biology, 2008, 33(4):223-237. 6. Xu, F., Seffen, K. A., and Lu, T. J., Non-Fourier analysis of skin biothermomechanics. International Journal of Heat and Mass Transfer, 2008, 51:2237-2259. 7. Xu, F., Wen, T., Lu, T. J., and Seffen, K. A., Modelling of nociceptor transduction in skin thermal pain sensation. Journal of Biomechanical Engineering, 2008, 130(4):1-13. 8. Xu, F., Wen, T., Seffen, K. A., and Lu, T. J., Biothermomechanics of skin tissue. Journal of the Mechanics and Physics of Solids, 2008, 56(5):1852-1884. 9. Xu, F., Lu, T. J., and Seffen, K. A., Thermally-induced change in the relaxation behaviour of skin tissue. ASME Journal of Biomechanical Engineering. 2008, 130 (4), 1-13 10.Xu, F., Lu, T. J., Seffen, K. A., and Ng, E. Y. K., Bioheat transfer of skin tissue. Applied Mechanics Review, 2009, 62(5), 050801 11.Lin, M., Luo, Z.Y., Bai, B.F., Xu,F., Lu,T.J. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS

ONE,2011, 6(3): e18068.12. Lin, M., Liu, S.B., Niu, L., Feng, X., Lu, T.J. Analysis of thermal-induced dentinal fluid flowand its implications in dental thermal pain. Archives of Oral Biology, 2011, 56(9) 846-85613. Lin, M., Luo, Z.Y, Bai, B.F, Xu,F, Lu, TJ. Fluid dynamics analysis of shear stress on nerveendings in dentinal microtubule: A quantitative interpretation of hydrodynamic theory fortooth pain. Journal of Mechanics in Medicine and Biology, 2011,11(1):205-219.14. Lin, M, Zai, X., S.Q. Wang, Wang, ZJ., Xu,F., Lu, TJ.Influences of Supra-physiologicalTemperatures on Microstructure and Mechanical Properties of Skin Tissue.MedicalEngineering&Physics, 2011, DO1:10.1016/j.medengphy.2011.12.00315.Lin, M.,Xu,F., Lu,TJ., Bai, B.F.A review of heat transfer in human tooth-Experimentalcharacterizationandmathematical modeling.DentalMaterials,2010,26(6):501-51316.徐峰,林敏,卢天健,Seffen,K.A,Ng,E.Y.K皮肤生物热传导模型综述中国力学文摘,2010,24(2):1-3817.林敏,刘少宝,牛林,徐峰卢天健,牙齿热疼痛流体动力学假说的证实与完善,西安交通大学学报,2011,45(12):118-122Writers::FengXu,MinLinExaminer&Approver:ZhangJianbao

ONE, 2011, 6(3): e18068. 12.Lin, M., Liu, S.B., Niu, L., Feng, X., Lu,T.J. Analysis of thermal-induced dentinal fluid flow and its implications in dental thermal pain. Archives of Oral Biology, 2011, 56(9) 846-856. 13.Lin, M., Luo, Z.Y., Bai, B.F., Xu,F., Lu,T.J. Fluid dynamics analysis of shear stress on nerve endings in dentinal microtubule: A quantitative interpretation of hydrodynamic theory for tooth pain. Journal of Mechanics in Medicine and Biology, 2011,11(1):205–219. 14.Lin, M., Zai, X., S.Q. Wang, Wang, Z.J., Xu, F., Lu, T.J. Influences of Supra-physiological Temperatures on Microstructure and Mechanical Properties of Skin Tissue. Medical Engineering & Physics, 2011, DOI:10.1016/j.medengphy.2011.12.003 15.Lin, M., Xu,F., Lu,T.J., Bai, B.F. A review of heat transfer in human tooth—Experimental characterization and mathematical modeling. Dental Materials, 2010,26(6):501-513. 16.徐峰,林敏,卢天健,Seffen, K.A., Ng, E.Y.K. 皮肤生物热传导模型综述. 中国力学文 摘, 2010,24(2):1-38. 17.林敏,刘少宝,牛林,徐峰,卢天健. 牙齿热疼痛流体动力学假说的证实与完善,西安交通大 学学报,2011,45(12):118-122. Writers: Feng Xu, Min Lin Examiner& Approver : Zhang Jianbao

教学大纲4学时第一章多尺度生物传输概念第一节临床中的多尺度生物传输现象第二节多尺度生物传输的基本特点第三节多尺度生物传输的模型创建及计算机求解6学时第二章典型人体组织的解部结构及其神经分布特性第一节人体软组织(皮肤)的解剖结构及相应的神经分布特点第二节人体硬组织(牙齿)的解剖结构及相应的神经分布特点第三节组织的功能及对外界刺激响应的基础第四节疼痛感知的神经生理学基础6学时第三章生物组织热-力耦合及神经生理学实验基础第一节温控双轴拉伸实验系统的设计及使用方法第二节可施加特定的热边界条件的环境舱设计第三节Labview编写驱动系统及操作界面第四节数据采集及处理第五节采用SPIKE2记录处理软件处理电神经生理学实验数据6学时第四章生物组织热-力耦合及热损伤模型第一节多尺度下胶原纤维的热损伤第二节Pennes生物热传导方程及求解方法第三节试位法(线性插值法)第四节复合材料力学理论及损伤积分方法

教学大纲 第一章 多尺度生物传输概念 4 学时 第一节 临床中的多尺度生物传输现象 第二节 多尺度生物传输的基本特点 第三节 多尺度生物传输的模型创建及计算机求解 第二章 典型人体组织的解剖结构及其神经分布特性 6 学时 第一节 人体软组织(皮肤)的解剖结构及相应的神经分布特点 第二节 人体硬组织(牙齿)的解剖结构及相应的神经分布特点 第三节 组织的功能及对外界刺激响应的基础 第四节 疼痛感知的神经生理学基础 第三章 生物组织热-力耦合及神经生理学实验基础 6学时 第一节 温控双轴拉伸实验系统的设计及使用方法 第二节 可施加特定的热边界条件的环境舱设计 第三节 Labview 编写驱动系统及操作界面 第四节 数据采集及处理 第五节 采用 SPIKE2 记录处理软件处理电神经生理学实验数据 第四章 生物组织热-力耦合及热损伤模型 6学时 第一节 多尺度下胶原纤维的热损伤 第二节 Pennes 生物热传导方程及求解方法 第三节 试位法(线性插值法) 第四节 复合材料力学理论及损伤积分方法

6学时第五章Hodgkin-Huxley电神经生理学模型及理论基础第一节Hodgkin-Huxley电神经生理学等效电路第二节Hodgkin-Huxley微分方程的物理意义及推导第三节Hodgkin-Huxley模型的修正第四节害性感受器功能基础第五节微尺度下离子的定向跨膜传输与神经元放电第六节?应用举例6学时第六章疼痛感知的统一模型理论基础第一节感受器中的转换模型第二节神经纤维中的传输模型第三节中枢调制模型第四节生物组织疼痛的统一模型6学时第七章多尺度生物传输与神经生理学研究应用实例第一节多尺度生物传热模型第二节生物热-力耦合模型第三节温度刺激下神经生理学响应第四节生物组织疼痛的统一模型的应用

第五章 Hodgkin-Huxley 电神经生理学模型及理论基础 6 学时 第一节 Hodgkin-Huxley 电神经生理学等效电路 第二节 Hodgkin-Huxley 微分方程的物理意义及推导 第三节 Hodgkin-Huxley 模型的修正 第四节 害性感受器功能基础 第五节 微尺度下离子的定向跨膜传输与神经元放电 第六节 应用举例 第六章 疼痛感知的统一模型理论基础 6学时 第一节 感受器中的转换模型 第二节 神经纤维中的传输模型 第三节 中枢调制模型 第四节 生物组织疼痛的统一模型 第七章 多尺度生物传输与神经生理学研究应用实例 6学时 第一节 多尺度生物传热模型 第二节 生物热-力耦合模型 第三节 温度刺激下神经生理学响应 第四节 生物组织疼痛的统一模型的应用

学时分配学时分配表章内 容学时14学时第一章多尺度生物传输概念第二章典型人体组织的解剖结构及其神经6 学时2分布特性第三章生物组织热-力耦合及神经生理学实6 学时3验基础46 学时第四章生物组织热-力耦合及热损伤模型第五章Hodgkin-Huxley电神经生理学模型56 学时及理论基础66 学时第六章疼痛感知的统一模型理论基础第七章多尺度生物传输与神经生理学研究76 学时应用实例共计40学时课程考核办法:平时表现占20%,平时作业占30%;综合作业占50%

学时分配 学时分配表 章 内 容 学时 1 第一章 多尺度生物传输概念 4 学时 2 第二章 典型人体组织的解剖结构及其神经 分布特性 6 学时 3 第三章 生物组织热-力耦合及神经生理学实 验基础 6 学时 4 第四章 生物组织热-力耦合及热损伤模型 6 学时 5 第五章 Hodgkin-Huxley 电神经生理学模型 及理论基础 6 学时 6 第六章 疼痛感知的统一模型理论基础 6 学时 7 第七章 多尺度生物传输与神经生理学研究 应用实例 6 学时 共计 40 学时 课程考核办法: 平时表现占 20 %,平时作业占 30 %;综合作业占 50 %

已到末页,全文结束
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档