华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System

Stability Condition of a Discrete-Time LTI System BIBO Stability Condition-A discrete-time Lti System is bibo stable if the output sequence [n remains bounded for any bounded input sequence[nI a discrete-time LTI system is BiBO stable if and only if its impulse response sequence hn is absolutely summable, i.e S n<∞ 1=-0 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 1 Stability Condition of a Discrete-Time LTI System • BIBO Stability Condition - A discrete-time LTI system is BIBO stable if the output sequence {y[n]} remains bounded for any bounded input sequence{x[n]} • A discrete-time LTI system is BIBO stable if and only if its impulse response sequence {h[n]} is absolutely summable, i.e. = n=− S h[n]

Stability Condition of a Discrete-Time LT System Proof: Assume h[n] is a real sequence Since the input sequence xn is bounded we have x{]≤Bx< Therefore yn=∑m-≤∑k]xn-k k Bx∑Hk=BxS k Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 2 Stability Condition of a Discrete-Time LTI System • Proof: Assume h[n] is a real sequence • Since the input sequence x[n] is bounded we have • Therefore x[n] Bx y[n] h[k]x[n k] h[k] x[n k] k k = − − =− =− x k Bx h k = B =− [ ] S

Stability Condition of a Discrete-Time LTI System Thus,S< oo implies v[n]≤B,<∞ indicating that y[n] is also bounded o prove the converse, assume that yn] is bounded,ie,ynl≤B Consider the input given by Sgn(H[-n]),ifh-n]≠0 K f hl-n=o Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 3 Stability Condition of a Discrete-Time LTI System • Thus, S < implies indicating that y[n] is also bounded • To prove the converse, assume that y[n] is bounded, i.e., • Consider the input given by y[n] By n By y[ ] − = − − = 0 0 , if [ ] sgn( [ ]), if [ ] [ ] K h n h n h n x n

Stability Condition of a Discrete-Time LTI System where sgn(c)=+l ifc>0 and sgn(c)=-1 fc<0andK≤1 Note: Since xl叫]≤1,{x]} is obviously bounded For this input, yn] at n=0 is y0]=∑gn(]=S≤B,< k Therefore, y[n]<B, implies S< oo Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Stability Condition of a Discrete-Time LTI System where sgn(c) = +1 if c > 0 and sgn(c) = if c < 0 and • Note: Since , {x[n]} is obviously bounded • For this input, y[n] at n = 0 is • Therefore, implies S < −1 K 1 n By y[ ] x[n] 1 =− = = k y[0] sgn(h[k])h[k] S By

Stability Condition of a Discrete-Time LTI System Example- Consider a causal discrete-time Lti System with an impulse response hn]=(a)[m] For this system s=∑a"rn=∑ f a< =0 Therefore S<o if ak< l for which the system is bibo stable Ifal, the system is not biBO stable 5 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 5 Stability Condition of a Discrete-Time LTI System • Example - Consider a causal discrete-time LTI system with an impulse response • For this system • Therefore if for which the system is BIBO stable • If , the system is not BIBO stable S | | 1 | | 1 = h[n] ( ) [n] n = − = = = = =− 1 1 n 0 n n n S [n] if 1

Causality Condition of a Discrete-Time LTI System Let xi[n] and x2In]be two input sequences i[]=x2n]forn≤no The corresponding output samples at n=n of an lti system with an impulse response thin are then given by Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 6 Causality Condition of a Discrete-Time LTI System • Let and be two input sequences with • The corresponding output samples at of an LTI system with an impulse response {h[n]} are then given by x [n] 1 x [n] 2 x [n] x [n] 1 = 2 n no for n = no

Causality Condition of a Discrete-Time LTI System n[m]=∑k]x[-k]=∑k]x1[-k k=-∞ k=0 +∑hk]x1{m-k] k y2[no=∑hk]x2[m-k]=∑hkx2[m-k k: k=0 +∑hk]x2{o-k] Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 7 Causality Condition of a Discrete-Time LTI System = =− = − = − 0 2 2 2 k o k o o y [n ] h[k]x [n k] h[k]x [n k] − =− + − 1 2 k o h[k]x [n k] = =− = − = − 0 1 1 1 k o k o o y [n ] h[k]x [n k] h[k]x [n k] − =− + − 1 1 k o h[k]x [n k]

Causality Condition of a Discrete-Time LTI System If the lti system is also causal, then yIno]=y2lnol ASx1m]=x2 n for n≤no ∑h[kxo-k]=∑hk]x2{r-k] k=0 k=0 This implies ∑k-k]=∑kx2[r-k k: k 8 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 Causality Condition of a Discrete-Time LTI System • If the LTI system is also causal, then • As • This implies x [n] x [n] 1 = 2 n no for [ ] [ ] o no y n y 1 = 2 = = − = − 0 2 0 1 k o k o h[k]x [n k] h[k]x [n k] − =− − =− − = − 1 2 1 1 k o k o h[k]x [n k] h[k]x [n k]

Causality Condition of a Discrete-Time LTI System As xi[n]*x2[n] for n>no the only way the condition ∑k]x[-k]=∑hk]x2{To-k] k will hold if both sums are equal to zero which is satisfied if h[k]=o for k<0 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 9 Causality Condition of a Discrete-Time LTI System • As for the only way the condition will hold if both sums are equal to zero, which is satisfied if x [n] x [n] 1 2 n no − =− − =− − = − 1 2 1 1 k o k o h[k]x [n k] h[k]x [n k] h[k] = 0 for k < 0

Causality Condition of a Discrete-Time LTI System a discrete-time lti system is causal if and only if its impulse response hn is a causal sequence Example- The discrete-time system defined yn]=1x{]+x2x{n-1]+a3x[n-2]+4x[n-3] is a causal system as it has a causal impulse response {h4n]}={a1a234} 10 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 Causality Condition of a Discrete-Time LTI System • A discrete-time LTI system is causal if and only if its impulse response {h[n]} is a causal sequence • Example - The discrete-time system defined by is a causal system as it has a causal impulse response [ ] [ ] [ 1] [ 2] [ 3] y n = 1 x n +2 x n − +3 x n − +4 x n − { [ ]} { } h n = 1 2 3 4
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第5章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第4章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第2章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第18讲 排队论初步.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第17讲 连续时间 Markov链.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第16讲 离散时间 Markov链.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第15讲 随机信号的均方滤波.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第14讲 随机信号的检测.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第12讲 常见随机信号的性质.ppt
- 华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters.ppt
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt