华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations

Stability Condition in Terns of the pole locations A causal Lti digital filter is BlBO stable if and only if its impulse response hn]is absolutely summable, i.e S=∑h n<∞ 1=-0 We now develop a stability condition in terms of the pole locations of the transfer function H(z) Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 1 Stability Condition in Terms of the Pole Locations • A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., • We now develop a stability condition in terms of the pole locations of the transfer function H(z) = n=− S h[n]

Stability Condition in Terms of the pole locations The roc of the z-transform H(z)of the impulse response sequence h[n] is defined by values ofz=r for which hn]" is absolutely summable Thus if the roc includes the unit circle 1, then the digital filter is stable, and vice versa Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 2 Stability Condition in Terms of the Pole Locations • The ROC of the z-transform H(z) of the impulse response sequence h[n] is defined by values of |z| = r for which is absolutely summable • Thus, if the ROC includes the unit circle |z| = 1, then the digital filter is stable, and vice versa n h n r − [ ]

Stability Condition in Terms of the pole locations In addition, for a stable and causal digital filter for which hn is a right-sided sequence, the roc will include the unit circle and entire z-plane including the point 2三0 An fir digital filter with bounded impulse response is al ways stable Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 3 Stability Condition in Terms of the Pole Locations • In addition, for a stable and causal digital filter for which h[n] is a right-sided sequence, the ROC will include the unit circle and entire z-plane including the point • An FIR digital filter with bounded impulse response is always stable z =

Stability Condition in Terms of the pole locations On the other hand an iir filter may be unstable if not designed properly In addition, an originally stable IIR filter characterized by infinite precision coefficients may become unstable when coefficients get quantized due to implementation 4 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Stability Condition in Terms of the Pole Locations • On the other hand, an IIR filter may be unstable if not designed properly • In addition, an originally stable IIR filter characterized by infinite precision coefficients may become unstable when coefficients get quantized due to implementation

Stability Condition in Terms of the pole locations Example- Consider the causal Iir transfer function H(z) 1-1.845z1+0.8505862 The plot of the impulse response coefficients is shown on the next slide Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 5 Stability Condition in Terms of the Pole Locations • Example - Consider the causal IIR transfer function • The plot of the impulse response coefficients is shown on the next slide 1 2 1 1 845 0 850586 1 − − − + = z z H z . . ( )

Stability Condition in Terms of the Pole locations 010203040 Time index n As can be seen from the above plot, the impulse response coefficient h[n] decays rapidly to zero value as n increases Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 6 Stability Condition in Terms of the Pole Locations • As can be seen from the above plot, the impulse response coefficient h[n] decays rapidly to zero value as n increases 0 10 20 30 40 50 60 70 0 2 4 6 Time index n Amplitude h[n]

Stability Condition in Terns of the pole locations The absolute summability condition of h[n is satisfied Hence, H(z)is a stable transfer function Now. consider the case when the transfer function coefficients are rounded to values ith 2 digits after the decimal point H(z)= 1-1.85x-1+0.85z 2 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 7 Stability Condition in Terms of the Pole Locations • The absolute summability condition of h[n] is satisfied • Hence, H(z) is a stable transfer function • Now, consider the case when the transfer function coefficients are rounded to values with 2 digits after the decimal point: 1 2 1 1 85 0 85 1 − − − + = z z H z . . ( ) ^

Stability Condition in Terms of the pole locations a plot of the impulse response of hn is shown below 10203040506070 Time index n Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 Stability Condition in Terms of the Pole Locations • A plot of the impulse response of is shown below h[n] ^ 0 10 20 30 40 50 60 70 0 2 4 6 Time index n Amplitude h[n] ^

Stability Condition in Terns of the pole locations In this case the impulse response coefficient hIn] increases rapidly to a constant value as n increases Hence, the absolute summability condition of is violated Thus, H(z)is an unstable transfer function Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 9 Stability Condition in Terms of the Pole Locations • In this case, the impulse response coefficient increases rapidly to a constant value as n increases • Hence, the absolute summability condition of is violated • Thus, is an unstable transfer function h[n] ^ H(z) ^

Stability Condition in Terns of the pole locations The stability testing of a Iir transfer function is therefore an important problem In most cases it is difficult to compute the infinite sum <OO n=-0 For a causal iir transfer function the sum s can be computed approximately as Sx=∑ =0 h[n] Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 Stability Condition in Terms of the Pole Locations • The stability testing of a IIR transfer function is therefore an important problem • In most cases it is difficult to compute the infinite sum • For a causal IIR transfer function, the sum S can be computed approximately as = n=− S h[n] − = = 1 0 K n S h[n] K
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第5章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第4章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第2章 小结.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters.ppt
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt
- 大连海事大学:《通信原理》第11章 同步原理.ppt
- 大连海事大学:《通信原理》第2章 随机信号分析.ppt
- 大连海事大学:《通信原理》第3章 信道与噪声.ppt
- 大连海事大学:《通信原理》第4章 模拟调制系统.ppt
- 大连海事大学:《通信原理》第5章 数字基带传输系统.ppt
- 大连海事大学:《通信原理》第6章 数字频带传输系统.ppt