华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters

Simple Digital Filters Later in the course we shall review various methods of designing frequency-selective filters satisfying prescribed specifications We now describe several low-order fr and Ir digital filters with reasonable selective frequency responses that often are satisfactory in a number of applications Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 1 Simple Digital Filters • Later in the course we shall review various methods of designing frequency-selective filters satisfying prescribed specifications • We now describe several low-order FIR and IIR digital filters with reasonable selective frequency responses that often are satisfactory in a number of applications

Simple FIR Digital Filters fiR digital filters considered here have Integer-valued impulse response coeficients These filters are employed in a number of practical applications, primarily because of their simplicity, which makes them amenable to inexpensive hardware implementations Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 2 Simple FIR Digital Filters • FIR digital filters considered here have integer-valued impulse response coefficients • These filters are employed in a number of practical applications, primarily because of their simplicity, which makes them amenable to inexpensive hardware implementations

Simple FIR Digital Filters Lowpass FIr Digital Filters The simplest lowpass fir digital filter is the 2-point moving-average filter given by 1z+1 H0(二)=(1+z-)= 2 The above transfer function has a zero at z=-l and a pole atz=0 note that here the pole vector has a unit magnitude for all values of o Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 3 Simple FIR Digital Filters Lowpass FIR Digital Filters • The simplest lowpass FIR digital filter is the 2-point moving-average filter given by • The above transfer function has a zero at and a pole at z = 0 • Note that here the pole vector has a unity magnitude for all values of w z z H z z 2 1 1 1 2 1 0 + = + = − ( ) ( ) z = −1

Simple FIR Digital Filters On the other hand as o increases fromo to T, the magnitude of the zero vector decreases from a value of 2 the diameter of the unit circle. to o Hence, the magnitude response Ho(e )l is a monotonically decreasing function of o from a=0too=兀 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Simple FIR Digital Filters • On the other hand, as w increases from 0 to p, the magnitude of the zero vector decreases from a value of 2, the diameter of the unit circle, to 0 • Hence, the magnitude response is a monotonically decreasing function of w from w = 0 to w = p | ( )| 0 jw H e

Simple FIR Digital Filters The maximum value of the magnitude function is 1 at o=o and the minimum value is0ato=π,ie., (0 丌 0(e 1,|H0(e)=0 0 The frequency response of the above filter is given by 0(e e J0/2 cos(o/2) Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 5 Simple FIR Digital Filters • The maximum value of the magnitude function is 1 at w = 0, and the minimum value is 0 at w = p, i.e., • The frequency response of the above filter is given by 1 0 0 0 | 0 ( )| = , | ( )| = j jp H e H e ( ) cos( / 2) / 2 0 = w jw − jw H e e

Simple FIR Digital Filters The magnitude response Ho(eo)=cos(o/2) can be seen to be a monotonical decreasing function of o First-order FIr lowpass filter 0.8 06 0.4 0 0.4 0.6 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 6 Simple FIR Digital Filters • The magnitude response can be seen to be a monotonically decreasing function of w | ( )| cos( / 2) 0 = w jw H e 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 w/p Magnitude First-order FIR lowpass filter

Simple FIR Digital Filters The frequency (=0 at which 0(e0)= 0 0 is of practical interest since here the gang(Oc) in dB is given by G(Oc)=20log1o H(e/0c) 2010g10 (e70)-20log0y2全-3dB since the dc gain G(0)=201og. H(ej0)=o 7 10 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 7 Simple FIR Digital Filters • The frequency at which is of practical interest since here the gain in dB is given by since the dc gain w= wc ( ) 2 1 ( ) 0 0 0 j j H e H e c = w ( ) G wc 20log ( ) 20log10 2 3 dB 0 = 10 − − j H e ( ) G wc 20log ( ) 10 c j H e w = 0 20 0 0 10 ( ) = log ( ) = j G H e

Simple FIR Digital Filters Thus, the gain G(O)at @=o is approximately 3 db less than the gain at o=0 As a result, @. is called the 3-dB cutoff frequency To determine the value of o. we set Hole cos(oc/2)=2 which yields Oc=T/2 8 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 Simple FIR Digital Filters • Thus, the gain G(w) at is approximately 3 dB less than the gain at w = 0 • As a result, is called the 3-dB cutoff frequency • To determine the value of we set which yields w= wc wc wc wc = p/ 2 2 2 2 1 0 | ( )| = cos (w / 2) = w c j c H e

Simple FIR Digital Filters The 3-dB cutoff frequency @c can be considered as the passband edge trequency As a result, for the filter Ho(z) the passband width ly兀/2 Is approximately The stopband is from T /2 to T Note Ho(z) has a zero at z=-I oro=T which is in the stopband of the filter Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 9 Simple FIR Digital Filters • The 3-dB cutoff frequency can be considered as the passband edge frequency • As a result, for the filter the passband width is approximately p/2 • The stopband is from p/2 to p • Note: has a zero at or w = p, which is in the stopband of the filter wc H (z) 0 H (z) 0 z = −1

Simple FIR Digital Filters A cascade of the simple fir filters 0 2(+) results in an improved lowpass frequency response as illustrated below for a cascade of 3 sections First-order FIR lowpass filter cascade 80: 0.4 0.4 0.6 lI Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 Simple FIR Digital Filters • A cascade of the simple FIR filters results in an improved lowpass frequency response as illustrated below for a cascade of 3 sections ( ) ( ) 1 2 1 0 1 − H z = + z 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 w/p Magnitude First-order FIR lowpass filter cascade
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第5章 小结.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters.ppt
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt
- 大连海事大学:《通信原理》第11章 同步原理.ppt
- 大连海事大学:《通信原理》第2章 随机信号分析.ppt
- 大连海事大学:《通信原理》第3章 信道与噪声.ppt
- 大连海事大学:《通信原理》第4章 模拟调制系统.ppt
- 大连海事大学:《通信原理》第5章 数字基带传输系统.ppt
- 大连海事大学:《通信原理》第6章 数字频带传输系统.ppt
- 大连海事大学:《通信原理》第7章 模拟信号的数字传输.ppt
- 大连海事大学:《通信原理》第8章 数字信号的最佳接收.ppt