华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals

Transform-Domain Representation of Discrete-Time Signals Three useful representations of discrete-time sequences in the transform domain Y Discrete-time Fourier Transform (DTFT v Discrete Fourier Transform() √z- Transform Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 1 Transform-Domain Representation of Discrete-Time Signals • Three useful representations of discrete-time sequences in the transform domain: ✓Discrete-time Fourier Transform (DTFT) ✓Discrete Fourier Transform (DFT) ✓z-Transform

Discrete-Time Fourier Transform Definition- The discrete-time fourier transform dtFt)X(e/o)of a sequence is given X(e10)=∑ xInle joi In general. x(o jo) is a complex function of the real variable o and can be written as X(e/0)=X2(e0)+jXm(e) ime Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 2 Discrete-Time Fourier Transform • Definition - The discrete-time Fourier transform (DTFT) of a sequence x[n] is given by • In general, is a complex function of the real variable w and can be written as ( ) jw X e ( ) jw X e =− − = n j j n X e x n e w w ( ) [ ] ( ) ( ) ( ) w w w = + j im j re j X e X e j X e

Discrete-Time Fourier Transform(DTFT) Xre(eJo) and Xim(ejo) are, respectively, the real and imaginary parts of X(eJo), and are real functions of o X(e/o)can alternately be expressed as X(eo)=X(e jo )e jo( o) where 6(0)=ag{X(e/) Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 3 Discrete-Time Fourier Transform (DTFT) • and are, respectively, the real and imaginary parts of , and are real functions of w • can alternately be expressed as where ( ) jw X e ( ) jw re X e ( ) jw Xim e ( ) jw X e ( ) ( ) ( ) w w w = j j j X e X e e ( ) arg{ ( )} w w = j X e

Discrete-Time Fourier Transform X(eo )is called the magnitude function e(o)is called the phase function Both quantities are again real functions of o In many applications, the dtfT is called the Fourier spectrum Likewise, X(eJo ) and 0(o)are called the magnitude and phase spectra Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Discrete-Time Fourier Transform • is called the magnitude function • is called the phase function • Both quantities are again real functions of w • In many applications, the DTFT is called the Fourier spectrum • Likewise, and are called the magnitude and phase spectra ( ) jw X e (w) ( ) jw X e (w)

Discrete-Time Fourier Transform For a real sequence xn] X(e/o)land Xre(e Jo are even functions of @, whereas 0(o) and Xm(ejo )are odd functions of o Note: X(ejo)=X(eo)lee(o+27k =X(e yo 6() for any integer k The phase function 0(o) cannot be uniquely specified for any DTFT Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 5 Discrete-Time Fourier Transform • For a real sequence x[n], and are even functions of w, whereas and are odd functions of w • Note: for any integer k • The phase function (w) cannot be uniquely specified for any DTFT | ( ) | j X e w (w) ( ) jw re X e ( ) jw Xim e ( 2 ) ( ) | ( ) | j j j k X e X e e w w w + = ( ) | ( ) | j j X e e w w =

Discrete-Time Fourier Transform We will assume that the phase function 0(o) is restricted to the following range of values π≤6(0)<T called the principal value Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 6 Discrete-Time Fourier Transform • We will assume that the phase function (w) is restricted to the following range of values: called the principal value − (w)

Discrete-Time Fourier Transform The tFTs of some sequences exhibit discontinuities of 2T in their phase responses An alternate type of phase function that is a continuous function of o is often used It is derived from the original phase function by removing the discontinuities of 2丌 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 7 Discrete-Time Fourier Transform • The DTFTs of some sequences exhibit discontinuities of 2 in their phase responses • An alternate type of phase function that is a continuous function of w is often used • It is derived from the original phase function by removing the discontinuities of 2

Discrete-Time Fourier Transform The process of removing the discontinuities is called unwrapping The continuous phase function generated by unwrapping is denoted as ec(o) In some cases, discontinuities of Tt may be present after unwrapping 8 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 Discrete-Time Fourier Transform • The process of removing the discontinuities is called “unwrapping” • The continuous phase function generated by unwrapping is denoted as • In some cases, discontinuities of may be present after unwrapping (w) c

Discrete-Time Fourier Transform Example- The dtft of the unit sample sequence 8[n] is given by △(e)=∑8[ n]e=80]=1 1=-00 Example- Consider the causal sequence x[n]=a"u[n] a<1 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 9 Discrete-Time Fourier Transform • Example - The DTFT of the unit sample sequence d[n] is given by • Example - Consider the causal sequence ( ) = d[ ] = d[0] =1 − w =− w j n n j e n e x[n] = [n], 1 n

Discrete-Time Fourier Transform Its dtfT is given by X(e0)=∑a' u[n]e j=∑a'e-~0n n=-0 n=0 =∑ejoy=e/o n=0 as ae Jo=a<1 10 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 Discrete-Time Fourier Transform • Its DTFT is given by as = = = − w =− w − w 0 ( ) [ ] n n j n n j n j n X e n e e − w − = − w = = j e n j n e 1 1 0 ( ) = 1 − jw e
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第5章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第4章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第2章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第18讲 排队论初步.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第17讲 连续时间 Markov链.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第16讲 离散时间 Markov链.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第15讲 随机信号的均方滤波.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第14讲 随机信号的检测.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters.ppt
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt
- 大连海事大学:《通信原理》第11章 同步原理.ppt