华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain

LTI Discrete-Time Systems in the Transform domain An lti discrete-time system is completely characterized in the time-domain by its impulse response hin i We consider now the use of the dtft and the z-transform in developing the transform domain representations of an LtI system Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 1 LTI Discrete-Time Systems in the Transform Domain • An LTI discrete-time system is completely characterized in the time-domain by its impulse response {h[n]} • We consider now the use of the DTFT and the z-transform in developing the transformdomain representations of an LTI system

Finite-Dimensional LTi Discrete-Time Systems We consider lti discrete-time systems characterized by linear constant-coefficient difference equations of the form k{n-k]=∑pkx[n-k] k=0 k=0 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 2 Finite-Dimensional LTI Discrete-Time Systems • We consider LTI discrete-time systems characterized by linear constant-coefficient difference equations of the form: = = − = − M k k N k k d y n k p x n k 0 0 [ ] [ ]

Finite-Dimensional LT Discrete-Time Systems Applying the dtFtto the difference equation and making use of the linearity and the time-invariance properties of Table 3.2 we arrive at the input-output relation in the transform-domain as ∑dkeo0y(e0)=∑peok(e) k=0 k=0 where y(e/u) and x(eu)are the dtfts of yIn] and x[n], respectivel Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 3 Finite-Dimensional LTI Discrete-Time Systems • Applying the DTFT to the difference equation and making use of the linearity and the time-invariance properties of Table 3.2 we arrive at the input-output relation in the transform-domain as where and are the DTFTs of y[n] and x[n], respectively ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e ( ) j Y e ( ) j X e

Finite-Dimensional LTi Discrete-Time Systems In developing the transform-domain representation of the difference equation, it has been tacitly assumed that X(eu)and Y(e/u)exist The previous equation can be alternately written as e/kY(e0)=、 pre oklo() ∑ k=0 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Finite-Dimensional LTI Discrete-Time Systems • In developing the transform-domain representation of the difference equation, it has been tacitly assumed that and exist • The previous equation can be alternately written as ( ) j Y e ( ) j X e ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e

Finite-Dimensional LT Discrete-Time Systems Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance roperties of Table 3. 9 we arrive at N M ∑dkzY(=)=∑PkzX(=) k=0 k=0 where Y(z) and X(z)denote the z-transforms of yn] and xn] with associated RoCs, respectivel Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 5 Finite-Dimensional LTI Discrete-Time Systems • Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties of Table 3.9 we arrive at where Y(z) and X(z) denote the z-transforms of y[n] and x[n] with associated ROCs, respectively d z Y(z) p z X(z) M k k k N k k k = − = − = 0 0

Finite-Dimensional LTi Discrete-Time Systems a more convenient form of the z-domain representation of the difference equation is given ∑ k ()=∑Pk=6X(=) k=0 k=0 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 6 Finite-Dimensional LTI Discrete-Time Systems • A more convenient form of the z-domain representation of the difference equation is given by d z Y(z) p z X(z) M k k k N k k k = = − = − 0 0

The Frequency Response Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, possibly infinite. number of sinusoidal discrete-time signals of different angular frequencies Thus, knowing the response of the lti system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 7 The Frequency Response • Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, possibly infinite, number of sinusoidal discrete-time signals of different angular frequencies • Thus, knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property

The Frequency Response An important property of an LTI system is that for certain types of input signals, called eigen functions, the output signal is the input signal multiplied by a complex constant We consider here one such eigen function as the input Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 The Frequency Response • An important property of an LTI system is that for certain types of input signals, called eigen functions, the output signal is the input signal multiplied by a complex constant • We consider here one such eigen function as the input

The Frequency Response Consider the lti discrete-time system with an impulse response hn shown below xIn Its input-output relationship in the time domain is given by the convolution sum yrm]=∑hkxm-k] Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 9 • Consider the LTI discrete-time system with an impulse response {h[n]} shown below • Its input-output relationship in the timedomain is given by the convolution sum The Frequency Response x[n] h[n] y[n] =− = − k y[n] h[k]x[n k]

The Frequency Response If the input is of the form x[n]=ej <n<0 then it follows that the output is given by yn=∑Mho(n)=∑ kle-jok eJon k=-0 el H(e/)=∑列klek k=-0 10 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 The Frequency Response • If the input is of the form then it follows that the output is given by • Let = − x n e n j n [ ] , j n k j k k j n k y n h k e h k e e =− − =− − [ ] = [ ] = [ ] ( ) = =− − k j j k H(e ) h[k]e
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第5章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第4章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第2章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第18讲 排队论初步.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第17讲 连续时间 Markov链.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters.ppt
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt
- 大连海事大学:《通信原理》第11章 同步原理.ppt
- 大连海事大学:《通信原理》第2章 随机信号分析.ppt
- 大连海事大学:《通信原理》第3章 信道与噪声.ppt
- 大连海事大学:《通信原理》第4章 模拟调制系统.ppt