华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters

Comb Filters The simple filters discussed so far are characterized either by a single passband and/or a single stopband There are applications where filters with multiple passbands and stopbands are required The comb filter is an example of such filters Copyright C 2001, S K Mitra
1 Copyright © 2001, S. K. Mitra Comb Filters • The simple filters discussed so far are characterized either by a single passband and/or a single stopband • There are applications where filters with multiple passbands and stopbands are required • The comb filter is an example of such filters

Comb Filters In its most general form, a comb filter has a frequency response that is a periodic function of o with a period 2T/L, where L is a positive integer If H(z is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with L delays resulting in a structure with a transfer function given by G()=H(z) Copyright C 2001, S K Mitra
2 Copyright © 2001, S. K. Mitra Comb Filters • In its most general form, a comb filter has a frequency response that is a periodic function of w with a period 2p/L, where L is a positive integer • If H(z) is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with L delays resulting in a structure with a transfer function given by ( ) ( ) L G z = H z

Comb Filters If H(e/o) exhibits a peak at op, then G(eo) will exhibit L peaks at ok/L,0≤k≤L-1 in the frequency range0≤o<2兀 Likewise, if ( H(e/o)l has a notch at Oo then G(e/ o)l will have L notches at Ok/L 0≤k≤L-1 in the frequency range0≤o<2π a comb filter can be generated from either an Fir or an iir prototype filter Copyright C 2001, S K Mitra
3 Copyright © 2001, S. K. Mitra Comb Filters • If exhibits a peak at , then will exhibit L peaks at , in the frequency range • Likewise, if has a notch at , then will have L notches at , in the frequency range • A comb filter can be generated from either an FIR or an IIR prototype filter | ( )| jw H e | ( )| jw H e | ( )| jw G e | ( )| jw wp G e wo wp k/L wo k/L 0 k L −1 0 k L −1 0 w 2p 0 w 2p

Comb Filters For example, the comb filter generated from the prototype lowpass FIR filter Ho(z) (+z )has a transfer function G0()=H0(x2)=1(1+22) Go(eo )l has L notches Comb filter from lowpass prototype at o=2K+1)T/L and L ok peaks at o=2兀ML2 0≤k≤L-1, in the frequency range 0≤0<2丌 0.5 1.5 Copyright C 2001, S K Mitra
4 Copyright © 2001, S. K. Mitra Comb Filters • For example, the comb filter generated from the prototype lowpass FIR filter has a transfer function • has L notches at w = (2k+1)p/L and L peaks at w = 2p k/L, ( ) 1 2 1 1 − + z H0 (z) = ( ) ( ) ( ) L L G z H z z − = = 1+ 2 1 0 0 0 k L −1 , in the frequency range 0 w 2p | ( )| 0 jw G e 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 w/p Magnitude Comb filter from lowpass prototype

Comb Filters For example, the comb filter generated from the prototype highpass FIR filter H1(z) l(-2)has a transfer function IG(e/o) has L peaks Comb filter from highpass prototype at @=(2k+1)/L andL L/ notches at=2πk/L 0.6 0≤k≤L-1, in the frequency range 0≤0<2丌 0.5 Copyright C 2001,S K Mitra
5 Copyright © 2001, S. K. Mitra Comb Filters • For example, the comb filter generated from the prototype highpass FIR filter has a transfer function • has L peaks at w = (2k+1)p/L and L notches at w = 2p k/L, | ( )| 1 jw G e ( ) 1 2 1 1 − − z H1 (z) = ( ) ( ) ( ) L L G z H z z − = = 1− 2 1 1 1 0 k L −1 , in the frequency range 0 w 2p 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 w/p Magnitude Comb filter from highpass prototype

Comb Filters Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter For example, the M-point moving average filter M H(z (1-x-) has been used as a prototype Copyright C 2001, S K Mitra
6 Copyright © 2001, S. K. Mitra Comb Filters • Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter • For example, the M-point moving average filter has been used as a prototype ( ) ( ) 1 1 1 − − − − = M z z M H z

Comb Filters This filter has a peak magnitude at=0 andM-1 notches at o=2兀/M1≤C≤M-1 The corresponding comb filter has a transfer function G(=) 1--M M(1-z whose magnitude has l peaks at o=2k/L 0≤k≤L-1andL(M-1) notches at 0=2k/LM1≤k≤L(M-1) Copyright C 2001, S K Mitra
7 Copyright © 2001, S. K. Mitra Comb Filters • This filter has a peak magnitude at w = 0, and notches at , • The corresponding comb filter has a transfer function whose magnitude has L peaks at , and notches at , M −1 w = 2p / M 1 M −1 ( ) ( ) L LM M z z G z − − − − = 1 1 w = 2pk/L 0 k L −1 L(M −1) w= 2pk/LM 1 k L(M −1)

Allpass Transfer Function Definition An iir transfer function A()with unity magnitude response for all frequencies,i.e A(e/@ )/2 or all o is called an allpass transfer function An m-th order causal real-coefficient allpass transfer function is of the form A1()=当+MM/+…+d12A 1+d1z-+…+dM-12 M+1 M Copyright C 2001, S K Mitra
8 Copyright © 2001, S. K. Mitra Allpass Transfer Function Definition • An IIR transfer function A(z) with unity magnitude response for all frequencies, i.e., is called an allpass transfer function • An M-th order causal real-coefficient allpass transfer function is of the form = w w | ( )| 1, for all j 2 A e M M M M M M M M M d z d z d z d d z d z z A z − + − − − − − + − − + + + + + + + + = 1 1 1 1 1 1 1 1 1 ... ... ( )

Allpass Transfer Function If we denote the denominator polynomial of M(2) as DA/(二) Dn(z)=1+h1=+…+dM1+1 then it follows that AM(z)can be written as -M AM(z)=± 2 Note from the above that ()jD is a pole of a real coefficient allpass transfer function, then it has a zero at z=le- jp Copyright C 2001, S K Mitra
9 Copyright © 2001, S. K. Mitra Allpass Transfer Function • If we denote the denominator polynomial of as : then it follows that can be written as: • Note from the above that if is a pole of a real coefficient allpass transfer function, then it has a zero at AM (z) DM (z) M M M DM z d z dM z d z − + − − − = + + + + 1 1 1 1 1 ... ( ) AM (z) ( ) ( ) ( ) D z z D z M M M M A z − −1 = = j z re − = j r z e 1

Allpass Transfer Function The numerator of a real-coefficient allpass transfer function is said to be the mirror- image polynomial of the denominator, and vice versa We shall use the notation DM(z)to denote the mirror-image polynomial of a degree-M polynomial DM(z),i.e DM(2=2DM(2 10 Copyright C 2001, S K Mitra
10 Copyright © 2001, S. K. Mitra Allpass Transfer Function • The numerator of a real-coefficient allpass transfer function is said to be the mirrorimage polynomial of the denominator, and vice versa • We shall use the notation to denote the mirror-image polynomial of a degree-M polynomial , i.e., DM (z) ~ DM (z) D (z) z DM (z) M M − = ~
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt
- 大连海事大学:《通信原理》第11章 同步原理.ppt
- 大连海事大学:《通信原理》第2章 随机信号分析.ppt
- 大连海事大学:《通信原理》第3章 信道与噪声.ppt
- 大连海事大学:《通信原理》第4章 模拟调制系统.ppt
- 大连海事大学:《通信原理》第5章 数字基带传输系统.ppt
- 大连海事大学:《通信原理》第6章 数字频带传输系统.ppt
- 大连海事大学:《通信原理》第7章 模拟信号的数字传输.ppt
- 大连海事大学:《通信原理》第8章 数字信号的最佳接收.ppt
- 大连海事大学:《通信原理》第9章 差错控制编码.ppt