华南理工大学:《数字信号处理》(双语版) Chapter 10 Phase and Group Delays

Phase and Group Delays The output yIn] of a frequency-selective LTI discrete-time system with a frequency response H(e/o)exhibits some delay relative to the input x[n] caused by the nonzero phase response 0(o)=argH(e/o) of the system For an input x{]=AcoS(00n+),-<n<0 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 1 Phase and Group Delays • The output y[n] of a frequency-selective LTI discrete-time system with a frequency response exhibits some delay relative to the input x[n] caused by the nonzero phase response of the system • For an input ( ) j H e ( ) arg{ ( )} = j H e x[n] = Acos(on + ), − n

Phase and Group Delays the output is y[n]=AH(e/oo )cos(oon+0(Oo)+d) Thus, the output lags in phase by 0(oo) radians Rewriting the above equation we get [n]=AH(e/oo )cosool n+ 0(o)+ O Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 2 Phase and Group Delays the output is • Thus, the output lags in phase by radians • Rewriting the above equation we get [ ] = ( ) cos( + ( ) + ) o o j y n AH e o n ( ) o + = + o o o j y n AH e o n ( ) [ ] ( ) cos

Phase and Group Delays This expression indicates a time delay. known as phase delay at o=o. given by 0(0o p(wo O Now consider the case when the input Signal contains many sinusoidal components with different frequencies that are not harmonically related Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 3 Phase and Group Delays • This expression indicates a time delay, known as phase delay, at given by • Now consider the case when the input signal contains many sinusoidal components with different frequencies that are not harmonically related = o o o p o = − ( ) ( )

Phase and Group Delays In this case, each component of the input will go through different phase delays when processed by a frequency-selective LTI discrete-time system Then, the output signal, in general, will not look like the input signal The signal delay now is defined using a different parameter Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 4 Phase and Group Delays • In this case, each component of the input will go through different phase delays when processed by a frequency-selective LTI discrete-time system • Then, the output signal, in general, will not look like the input signal • The signal delay now is defined using a different parameter

Phase and Group Delays To develop the necessary expression, consider a discrete-time signal xn obtained y a double-sideband suppressed carrier (DSB-SC) modulation with a carrier frequency o of a low-frequency sinusoidal signal of frequency o xn=acos(oon cos(ocn) Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 5 Phase and Group Delays • To develop the necessary expression, consider a discrete-time signal x[n] obtained by a double-sideband suppressed carrier (DSB-SC) modulation with a carrier frequency of a low-frequency sinusoidal signal of frequency : o c x[n] Acos( n)cos( n) = o c

Phase and Group Delays The input can be rewritten as xn]=a cos(oen)+a cos(Oun) where oe=oc-Oo and Qu=oc+oo Let the above input be processed by an Lti discrete-time system with a frequency response H(e/o) satisfying the condition H(e/0)三1 for oe≤0≤Oln Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 6 Phase and Group Delays • The input can be rewritten as where and • Let the above input be processed by an LTI discrete-time system with a frequency response satisfying the condition [ ] cos( ) cos( ) 2 2 x n n un A A = + = c −o u = c +o ( ) j H e u j H e ( ) 1 for

Phase and Group Delays The output yn] is then given by y[n]=A cos(on+0(o2))+acos(o, n+O(Ou) Acos ocn≠on)+0 6(0n)-6(0c) coS Oon+ 2 2 Note: The output is also in the form of a modulated carrier signal with the same carrier frequency Oc and the same modulation frequency @o as the input Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 7 Phase and Group Delays • The output y[n] is then given by • Note: The output is also in the form of a modulated carrier signal with the same carrier frequency and the same modulation frequency as the input [ ] cos( ( )) cos( ( )) 2 2 u u A A y n = n + + n + − + + = + 2 ( ) ( ) cos 2 ( ) ( ) cos u o u A cn n c o

Phase and Group Delays However. the two components have different phase lags relative to their corresponding components in the input Now consider the case when the modulated input is a narrowband signal with the frequencies o and o, very close to the carrier frequency Oc, 1. e. @o is very small 8 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 8 Phase and Group Delays • However, the two components have different phase lags relative to their corresponding components in the input • Now consider the case when the modulated input is a narrowband signal with the frequencies and very close to the carrier frequency , i.e. is very small u c o

Phase and Group Delays In the neighborhood of o we can express the unwrapped phase response Ac(o)as 0c(0)≡6c(0)+ d0(o) do O=0 C by making a Taylors series expansion and keeping only the first two terms Using the above formula we now evaluate the time delays of the carrier and the modulating components 9 Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 9 Phase and Group Delays • In the neighborhood of we can express the unwrapped phase response as by making a Taylor’s series expansion and keeping only the first two terms • Using the above formula we now evaluate the time delays of the carrier and the modulating componentsc () c ( ) ( ) ( ) ( ) c c c c c c d d − + =

Phase and Group Delays In the case of the carrier signal we have ec(O1)+0e(0)0c(02 20c which is seen to be the same as the phase delay if only the carrier signal is passed through the system Copyright C 2001, S K Mitra
Copyright © 2001, S. K. Mitra 10 Phase and Group Delays • In the case of the carrier signal we have which is seen to be the same as the phase delay if only the carrier signal is passed through the system c c c c c u c − + − ( ) 2 ( ) ( )
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南理工大学:《数字信号处理》(双语版) Chapter 9 LTI Discrete-Time Systems in the Transform domain.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 8 z-Transform.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 7 DTFT Properties.ppt
- 华南理工大学:《数字信号处理》(双语版) Transform-Domain Representation of Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 5 Stability Condition of a Discrete-Time LTI System.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 4 Discrete-Time Systems.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 3 Discrete-Time Signals.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 1 Instructor.ppt
- 华南理工大学:《数字信号处理》(双语版) 第七章 数字滤波器设计.ppt
- 华南理工大学:《数字信号处理》(双语版) 第六章 数字滤波器的结构.ppt
- 华南理工大学:《数字信号处理》(双语版) 第五章 连续时间信号的数字处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第四章 LTI离散时间系统在变换域中的分析.ppt
- 华南理工大学:《数字信号处理》(双语版) 第三章 变换域中的离散时间信号.ppt
- 华南理工大学:《数字信号处理》(双语版) 第二章 数字信号处理.ppt
- 华南理工大学:《数字信号处理》(双语版) 第一章 数字信号处理概述.ppt
- 东南大学:《通信与信息工程中的随机过程》勘误表.pdf
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第5章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第4章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第2章 小结.ppt
- 东南大学:《随机过程》课程教学资源(PPT课件讲稿)第18讲 排队论初步.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 11 Stability Condition in Terms of the Pole Locations.ppt
- 华南理工大学:《数字信号处理》(双语版)Chapter 12 Linear-Phase FIR Transfer Functions.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 13 Simple Digital Filters.ppt
- 华南理工大学:《数字信号处理》(双语版) Chapter 14 Comb Filters.ppt
- 《卫星数据(IP)广播接收系统》讲义.ppt
- 《现代交换原理》第四章 程控数字交换系统的软件.ppt
- 《现代交换原理》第二章 信令系统.ppt
- 《现代交换原理》第六章 窄带综合业务数字网.ppt
- 《现代交换原理》第七章 宽带ISDN的关键技术ATM.ppt
- 《现代交换原理》第三章 程控数字交换机的硬件系统.ppt
- 《现代交换原理》第八章 电信网与因特网的结合.ppt
- 《现代交换原理》第五章 智能网.ppt
- 《现代交换原理》第一章 电信交换基础.ppt
- 大连海事大学:《通信原理》第一章 绪论.ppt
- 大连海事大学:《通信原理》第10章 伪随机序列.ppt
- 大连海事大学:《通信原理》第11章 同步原理.ppt
- 大连海事大学:《通信原理》第2章 随机信号分析.ppt
- 大连海事大学:《通信原理》第3章 信道与噪声.ppt
- 大连海事大学:《通信原理》第4章 模拟调制系统.ppt
- 大连海事大学:《通信原理》第5章 数字基带传输系统.ppt