东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations

Constitutive Relations
Constitutive Relations

Outline.Constitutive Laws.Strain Energy.Linear Constitutive Relations? Anisotropy and Stiffness Tensor· Isotropic Hooke's Law: Physical Meaning of Elastic Moduli? Simple Engineering Tests: Relationship among Elastic Constants· Hooke's Law in Curvilinear CoordinatesThermoelasticConstitutiveRelations. Typical Values of Elastic Constants. Inhomogeneity2
Outline • Constitutive Laws • Strain Energy • Linear Constitutive Relations • Anisotropy and Stiffness Tensor • Isotropic Hooke’s Law • Physical Meaning of Elastic Moduli • Simple Engineering Tests • Relationship among Elastic Constants • Hooke’s Law in Curvilinear Coordinates • Thermoelastic Constitutive Relations • Typical Values of Elastic Constants • Inhomogeneity 2

Constitutive Laws: Relations that characterize the mechanical properties ofmaterials: Perhaps one of the most challenging fields in mechanics,due to the endless variety of materials and loadingsThe mechanical behavior of solids is normally defined byconstitutive stress-strain relations.Generallyo = f(ε,ε,t,T,.3
Constitutive Laws • Relations that characterize the mechanical properties of materials • Perhaps one of the most challenging fields in mechanics, due to the endless variety of materials and loadings σ f ε ε , , , , t T • The mechanical behavior of solids is normally defined by constitutive stress-strain relations • Generally 3

Perfect (Linear) Elastic Solids Neglect strain rate, time and loading history dependencySet aside thermal, electric, pore-pressure, and other loads Include only mechanical loadsAssume linear stress-strain relationshipDefined as materials that recover original configurationwhen mechanical loads are removedAgree well with experimental tests=E8SteelCastlronAluminum
• Neglect strain rate, time and loading history dependency • Set aside thermal, electric, pore-pressure, and other loads • Include only mechanical loads • Assume linear stress-strain relationship • Defined as materials that recover original configuration when mechanical loads are removed Perfect (Linear) Elastic Solids • Agree well with experimental tests x x E 4

Strain Energy (Stress-Deformation Work) In physical terms, stress represents the variation of strainenergy with respect to strain changea"U(0)aU (0)U (s,)=U (0)+5kl211aokCGmmU(c,)=U(0)+buCu +Cklmmuemn +O(c3aU(6) =bu +(+Ckl)u +0(2)d5
2 3 0 0 0 ij kl kl mn kl kl mn U U U U O • In physical terms, stress represents the variation of strain energy with respect to strain change Strain Energy (Stress-Deformation Work) 3 2 0 ij kl kl klmn kl mn ij ij ij ijkl klij kl ij U U b c O U b c c O 5

Stiffness of Perfect Elastic SolidsIsothermal and perfect elasticity results irCiki+Cklj)ok~Cuikkl Symmetry propertyO,=Oj=Cjk iik-Skl=Sik =jki = Cjiki +Cklj =CijklkliiThere remain 21 independent elastic components6
Stiffness of Perfect Elastic Solids • Symmetry property ij ijkl klij kl ijkl kl c c C • Isothermal and perfect elasticity results in ij ji kl kl C C ij ji kl lk ij ij ji kl kl kl lk ij ij ijkl ijkl klij kl klij C C C C C c c C C • There remain 21 independent elastic components 6

Generalized Hooke's Law in Matrix Form0,= CujuCul=Cj1161 + Cj222 + Cyj33633 + 2Cj12612 + 2Cyj1313 + 2Cuj23623(Ci1C133C112C113Cμ122Ci123af81C 2223C 233C 2212C 222C2213622C 333C 3323C3312C331363832812C/212C213C1223T12C1313Ci13232813Symm.1132623C2323T2323: 21 elastic constants7
11 11 22 22 33 33 12 12 13 13 23 23 1 1111 1122 1133 1112 1113 1123 2 2 2 ij ijkl kl ij ij ij ij ij ij C C C C C C C C C C C C C C C C C C 1 Generalized Hooke’s Law in Matrix Form 2 2222 2233 2212 2213 2223 3 3333 3312 3313 3323 12 1212 1213 1223 13 23 Symm. C C C C C C C C C C C C 2 3 12 1313 1323 13 2323 23 2 2 2 C C C • 21 elastic constants 7

Anisotropy: Differences in material properties along differentdirections Materials like wood, crystalline minerals, fiber-reinforced composites have such behaviorTypical WoodBody-CenteredHexagonalFiberReinforcedStructureCrystalCubic CrystalComposite: Note particular material symmetries indicated by arrows8
Anisotropy • Differences in material properties along different directions. • Materials like wood, crystalline minerals, fiberreinforced composites have such behavior. Body-Centered Cubic Crystal Fiber Reinforced Composite Hexagonal Crystal Typical Wood Structure • Note particular material symmetries indicated by arrows. 8

Monotropic Materials· Symmetric about one planeEamineCl1,Ci13,C223,C2223,C3,C33,C,Ci2Cl13=QimQ,Q1.OspCmmop(m= l;n =l;o= l;p=3)= C(l13 = QuQiQuQ,Ci113 = -Ci13 = Cium3=0= 0|C2223= 01113=0:3323=02312= 0C1312=03313CilllCi122Cμ133Ci112a61C222C2233C22126262001C3312C 33336303001Qi2812T12Ci21200-12813T13SymmC1313322823T232323.13 different elastic constants9
Monotropic Materials • Symmetric about one plane 1113 1 1 1 3 1113 11 11 11 33 1113 1113 1113 1123 2213 2223 1113 1123 2213 2223 3313 3323 1213 122 1 3 11 3 1 Examine ; 1; 1; 3 0 0 0 0 0 0 : , , , , , , 0 , C Q Q Q Q C m n o p m n o p mnop C Q Q Q Q C C C C C C C C C C C C C C C C C C C 0 1 0 0 0 1 0 0 0 1 Qij 3313 3323 2 13 2 C C C 0 0 0 111 1312 1111 1122 1133 1112 1 2 3 12 13 23 3 0 C C C C C C C1123 C C C 2222 2233 2212 C2213 C2223 C C 3333 3312 C3 13 3 C3323 C1212 C12 31 C1223 1 2 3 12 13 1313 1323 23 2323 2 2 Symm. 2 C C C • 13 different elastic constants 9

Orthotropic Materials: Symmetric about two orthogonal planesExamine:Cl12,C2212,C3312,C/323Cl12=Q1mQinQ1.Q2pCmmop(m=l;n=l;o=1,p=2)= C(l12 = QQuQQ22Ci112 = -Ci112 = Ci11=0C22122313.=0=01112CullCi122C1133g81C222C22330262C3333Q3632812T12C121226130T130SymmC131328230T23-1Qu23230-1·9 different elastic constants10
Orthotropic Materials • Symmetric about two orthogonal planes 1112 1 1 1 2 1112 11 11 11 22 1112 1112 111 1112 2212 3312 2313 1112 2212 33 2 Examine: , , , 12 1323 1; 1; 1; 2 0 0 0 0 m n o p mnop C C C C C Q Q Q Q C m n o p C Q Q Q Q C C C C C C C C C C C C C 1 0 0 0 1 0 0 1 Qij 1111 1122 11 1 2 3 12 13 23 C C C 33 C1112 C1113 C1123 C C 2222 2233 C2 12 2 C2213 C2223 C3333 C33 21 C3313 C3323 C1212 C12 31 C1223 Symm. C1313 C1323 1 2 3 12 13 23 2323 2 2 2 C 10 • 9 different elastic constants
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第4章 桥梁工程抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第5章 桥梁延性抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第3章 桥梁抗震概论.pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(单自由度体系的振动分析).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第2章 桥梁震害.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第1章 地震概述.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第一讲 中国历史建筑发展概况.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第二讲 中国传统建筑基本特征.pdf
