东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation

Two-Dimensional Formulation
Two-Dimensional Formulation

OutlineIntroductionPlane StrainPlane StressBoundary ConditionsCorrespondence between Plane Strain and Plane StressCombined Plane Formulations Anti-Plane StrainAiry Stress Function· Polar Coordinate Formulation2
Outline • Introduction • Plane Strain • Plane Stress • Boundary Conditions • Correspondence between Plane Strain and Plane Stress • Combined Plane Formulations • Anti-Plane Strain • Airy Stress Function • Polar Coordinate Formulation 2

Introduction: Three-dimensional elasticity problems are very difficult to solveThus we will first solve a number of two-dimensional problems.and will explore three different theories:-Plane StrainPlaneStress-Anti-Plane Strain Since all real elastic structures are three-dimensional, theories setforth here will be approximate models. The nature and accuracyof the approximation will depend on problem and loadinggeometry.. The basic theories of plane strain and plane stress represent thefundamental plane problem in elasticity. While these two theoriesapply to significantly different types of two-dimensional bodies.their formulations yield very similar field equations3
Introduction • Three-dimensional elasticity problems are very difficult to solve. Thus we will first solve a number of two-dimensional problems, and will explore three different theories: - Plane Strain - Plane Stress - Anti-Plane Strain • Since all real elastic structures are three-dimensional, theories set forth here will be approximate models. The nature and accuracy of the approximation will depend on problem and loading geometry. • The basic theories of plane strain and plane stress represent the fundamental plane problem in elasticity. While these two theories apply to significantly different types of two-dimensional bodies, their formulations yield very similar field equations. 3

Plane Strain: Consider an infinitely long cylindrical (prismatic) body as shownIf the body forces and tractions on lateral boundaries areindependent of the z-coordinate and have no z-component, thenthe deformation field can be taken in the reduced formu=u(x,y),V=v(x,y),0.=wRA
Plane Strain • Consider an infinitely long cylindrical (prismatic) body as shown. If the body forces and tractions on lateral boundaries are independent of the z-coordinate and have no z-component, then the deformation field can be taken in the reduced form x y z R ( , ) , ( , ) , 0 . u u x y v v x y w 4

Plane Strain Field Eguations1. Displacement-strain relation:12ayawawauavauawau1avazax=azaxayaaxnau1+vLIsotropic Hooke's Law: g. = as,2GEE2G86=元2GE0.=11 ++1v(ar+a))EEE1+VEEF5
Plane Strain Field Equations 1 1 1 , , , 0 , 0 , 0 . 2 2 2 x y x y z x z y z u v u v w u w v w x y y x z z x z y • Displacement-strain relation: 2 , 2 , 2 0 1 1 , 1 1 1 , 0 x x y x y x y y z x y x y x y z x z y x x x y z x x y y y x x y z y x y x y x y z x z y z y G G G E E E E E E E , 5 , , 1 2 i j i j j i u u 1 2 ; . i j k k i j i j i j i j k k i j G E E • Isotropic Hooke’s Law:

Plane Strain Field Eguations· Equilibrium Equationsataga1xJaxayatagXYF0atagax0ayxy+ag0xayat0axayatatagy2A0azaxOy6
• Equilibrium Equations x y x x z x y z 0 , x x y y y z F x y z 0 , 0 . y y z x z z z F F x y z 0 , 0 . x y x x x y y y F x y F x y Plane Strain Field Equations 6

Plane Strain Field Equations.Navier's Equations(auavaaGvu+(a+G)ayoxiox( auaavOGV(A+GV+ayoylaxa(aurowGV2+α+GWayazaxaza(auav)GV(+G)4axoyax-a(auavGV0(+CaydyoxGVu+GVV1
• Navier’s Equations 2 u v w G u G x x y z 2 0 , x F u v w G v G y x y z 2 0 , 0 . y z F u v w G w G F z x y z 2 2 2 ( ) 0 , ( ) 0 . 0 . x y u v G u G F x x y u v G v G F y x y G G u u F Plane Strain Field Equations 7

Plane Strain Field Eguationsjl,ik = 0 (6 eqns) Strain CompatibilityCyu,k+ekkl.ijik,jlaaSCxy2axQxoy0. Beltrami-Michell Equation:2D Constitutive LawaxoyQaaaOOLAddto both sides:(1-v)(gaxaxayayaxoyaF(aFUsingEquilibriumontheRHS:(I-)(o,+oayaxaF.(aF1axay8
• Beltrami-Michell Equation: Plane Strain Field Equations 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 D C o n s t i t u t i v e L a w : 2 A d d t o b o t h s i d e s : 1 2 U s i n g E q u i li b r i u m o n t h e R H S : 1 x y x x y y x y y y x y x x x y y x x y y x x y x y x y x y F F x y 2 1 1 y x x y F F x y 8 • Strain Compatibility 2 2 2 2 2 2 y x y x y x x y , , , , 0 ij k l k l ij ik jl jl ik (6 eqns)

Examples of Plane Strain ProblemsPX.-X1Long cylindersSemi-infiniteregions underunder uniform loadinguniformloadings9
Examples of Plane Strain Problems x y z x y z P Long cylinders under uniform loading Semi-infinite regions under uniform loadings 9

Anti-Plane Strain: An additional plane strain theory of elasticity called Anti-Plane Strain involves a formulation based on theexistence of only out-of-plane deformation starting withan assumed displacement field: u = v = O, w = w(x, y)StrainsStresses0SC0.Oaa二T二xyy1 ow1aw2G82G520x2oyNavier's EquationEquilibriumEquationsatatF=0GVw+F=0.ayaxFF=010
Anti-Plane Strain • An additional plane strain theory of elasticity called AntiPlane Strain involves a formulation based on the existence of only out-of-plane deformation starting with an assumed displacement field: u v w w x y 0 , ( , ) . 0 , 1 1 , . 2 2 x y z x y x z y z w w x y 0 , 2 , 2 . x y z x y x z x z y z y z G G 0 , 0 . y z x z z x y F x y F F 2 0 . z G w F Strains Stresses Equilibrium Equations Navier’s Equation 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第4章 桥梁工程抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第5章 桥梁延性抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第3章 桥梁抗震概论.pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(单自由度体系的振动分析).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第2章 桥梁震害.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第1章 地震概述.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第一讲 中国历史建筑发展概况.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第二讲 中国传统建筑基本特征.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第三讲 城市建设史.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第四讲 宫殿建筑.pdf
