东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials

Hypo-elastic Materialsmi@se.ed.cn
Hypo-elastic Materials

Outline·Introduction(弓言)·Nonlinearelastic shearmodel(非线性弹性剪切模型)·Calibration of nonlinear elastic shear model(模型校准2
Outline • Introduction(引言) • Nonlinear elastic shear model(非线性弹性剪切模型) • Calibration of nonlinear elastic shear model(模型校准) 2

Lntroduction福? Hypoelasticity is used to modelmaterials that exhibit nonlinear, butStrainenergyreversible, stress-strain behavior evendensityCat small strains The specimen deforms reversibly: ifyou remove the loads, the solidreturns to its original shape.: The strain in the specimen depends only on the stressapplied to it; it does not depend on the rate of loading orthe history of loading. We will assume here that the material is isotropic3
Introduction 3 • The strain in the specimen depends only on the stress applied to it; it does not depend on the rate of loading or the history of loading. • We will assume here that the material is isotropic. • Hypoelasticity is used to model materials that exhibit nonlinear, but reversible, stress-strain behavior even at small strains. • The specimen deforms reversibly: if you remove the loads, the solid returns to its original shape

Introduction. Strains and rotations are assumed to be small. We useinfinitesimal strain and Cauchy stress.? Existence of a strain energy density guarantees thatdeformations of the material are perfectly reversible. If the material is isotropic, the strain energy can only be afunction of invariants of the strain tensor, i.e. threeprincipal strains.? It is usually more convenient to use the three fundamentalscalar invariants:I,==+82+83,n, =nn;(,8,-8,))=82 +8283 +8381det[8, -8,8, = 01= det-S.8iGu6,6,838,3+,c,2-1,8,+1,=064
• Strains and rotations are assumed to be small. We use infinitesimal strain and Cauchy stress. • Existence of a strain energy density guarantees that deformations of the material are perfectly reversible. • If the material is isotropic, the strain energy can only be a function of invariants of the strain tensor, i.e. three principal strains. • It is usually more convenient to use the three fundamental scalar invariants: Introduction 4 3 2 1 2 3 det 0 0 ij j n i ij n ij n n n n n I I I 1 1 2 3 2 1 2 2 3 3 1 3 1 2 3 1 2 1 det 6 kk ii jj ij ji ij ijk rst ir js kt I I I

Nonlinear Elastic Shear Model: In most practical applications, nonlinear behavior is onlyobserved when the material is subjected to sheardeformation (characterized by I,), whereas stress varieslinearly with volume changes (characterized by I). Note the slightly different definition of I, which rendersus great simplification in deriving the inverse relation:al,1al=0,l=(sf,-1eu5n)uoI =6k =6.-306j061n+1)/2nau2no.6al.al0-KI?UI.KI=aI206jn+1ao06600/2OUC30605
• In most practical applications, nonlinear behavior is only observed when the material is subjected to shear deformation (characterized by I2 ), whereas stress varies linearly with volume changes (characterized by I1 ). • Note the slightly different definition of I2 , which renders us great simplification in deriving the inverse relation: Nonlinear Elastic Shear Model 5 1 2 1 2 2 0 0 0 2 1 2 1 2 2 1 2 1 1 2 2 0 0 0 1 1 2 2 0 2 2 0 0 1 1 1 , 2 3 1 2 , 2 1 1 3 3 n n n n kk ij ij ij kk ll ij ij ij ij n n ij kk ij ij kk ij i ij kk i i j j j n I I I I U U I I KI K I I I I I I n K

Nonlinear Elastic Shear Model? Strain in terms of stress16%2dC,=K=k=3K8=8k8kk2kkA1.33K60Sn1-1)/2n1%0813a.160.0UO1钻kki19K3oO=3K=0 k-2g0..0+208O.LKA3-20:(0,0-50u0m)1,=g-C一6
• Strain in terms of stress Nonlinear Elastic Shear Model 6 2 0 2 2 0 1 1 2 2 2 0 0 0 1 2 2 2 0 0 0 0 1 1 3 3 3 1 3 1 1 9 3 n ij kk ij kk ij kk kk kk n ij n n n kk ij kk ij ij kk ij ij kk ij ij kk ij I K K K K K I I 1 2 2 2 2 0 0 2 1 2 1 2 2 2 2 0 2 2 0 0 0 2 0 1 3 2 2 3 1 1 , 2 3 1 1 2 3 n ij ij kk ll kk ll ij ij kk l n ij ij kk ll l n I K I I I I

Calibration of Nonlinear Elastic Shear ModelOo..019K6Hydrostatic stress statepCi1 = 22 = O33 = p = 8u = 822 二839K3Ka. Pure shear1CO12=021 = T=812=89K3O.Uniaxial tensionO9K9K0Ogu=g,O80)9KV39KJo3aa
• Hydrostatic stress state Calibration of Nonlinear Elastic Shear Model 7 0 11 22 33 11 22 1 2 2 2 0 33 0 1 1 3 3 9 3 n I p p p p K 3 p K • Pure shear 12 21 1 2 2 1 12 1 9 kk K 2 12 1 2 0 2 0 0 1 3 n kk 0 0 n • Uniaxial tension 1 2 0 0 11 11 11 2 0 0 0 11 1 2 0 0 22 33 22 22 2 0 0 2 2 2 2 2 2 0 1 1 2 9 3 9 3 3 , 1 1 9 3 9 3 1 1 2 3 3 3 3 3 n n n n K K I K K 1 2 0 2 2 2 0 0 1 1 1 1 , 9 3 2 3 n ij kk ij ij kk ij ij ij kk ll I I K
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 《固体力学基础》课程参考文献:《材料力学史》书籍教材PDF电子版(铁木生可).pdf
- 东南大学:《固体力学基础》课程概述 Foundations of Solid Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A01 Introduction to Architectural Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A22 Cyclic Loading and Fatigue.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A21 Dynamic Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A20 Energy Method.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A19 Column Buckling.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A18 Combined Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A17 Strength Theory.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A16 Stress State.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
