东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs

Simple Hyperelastic BVPsmi@se.ed.cn
Simple Hyperelastic BVPs

Outline·Theoryof hyperelasticity(超弹理论回顾)·Incompressible spherically symmetric solids(不可压缩中心对称体)Pressurizedhollow sphere(压力球腔)>Governing equations(控制方程)》Boundarycondition(边界条件)>Displacementvs.Pressure(位移与压力函数关系)>Radial stress distribution(径向应力分布)>Hoopstressdistribution(箍筋应力/周向应力)2
Outline • Theory of hyperelasticity(超弹理论回顾) • Incompressible spherically symmetric solids(不可压缩 中心对称体) • Pressurized hollow sphere(压力球腔) 2 Governing equations(控制方程) Boundary condition(边界条件) Displacement vs. Pressure(位移与压力函数关系) Radial stress distribution(径向应力分布) Hoop stress distribution(箍筋应力/周向应力)

Summary of the Theory of HyperelasticityThe solid is stress free in its undeformed configurationTemperature changes during deformation are neglectedThe solid is incompressible.Re2RelDeformedOriginale3ConfigurationConfiguration3
• The solid is stress free in its undeformed configuration. • Temperature changes during deformation are neglected. • The solid is incompressible. Summary of the Theory of Hyperelasticity 3

Summary of the Theory of Hyperelasticity. Strain-displacement relations: B, = FiFjk, F, =O, +ujj Incompressibility: J = det[F] = 1BB.I, = BkkStress-strain relationdauauauauau1B. BB21nimimalal,3alal,alz00u+F, = 0.Equilibrium equationsayiTraction BCs on S: ,n, =tj Displacement BCs on Su: u, = u,4
Summary of the Theory of Hyperelasticity , , B F F F u ij ik jk ij ij i j J det 1 F • Strain-displacement relations: • Incompressibility: • Stress-strain relation • Traction BCs on St : • Displacement BCs on Su : 2 1 2 1 1 1 2 1 2 1 2 2 1 , , 2 2 2 . 3 kk ik ki ij ij ij im jm ij I B I I B B U U U U U I B I I B B p I I I I I • Equilibrium equations: 0. ij j i F y ij i j n t i i u u 4

Incompressible Spherically Symmetric Solidse3. Coordinates in undeformedeRconfiguration { R, Φ, @} Coordinates in deformedveoRconfiguration (r, P,0e20eiPoints only move radially, dueto spherical symmetryr= f(R)0=00= d.Position vectorin the undeformed solid:x=Re,Position vector in the deformed solid:y= re,=f(R)e. Displacement vector: u = y - x = re, - Re, = (f(R) - R)e5
• Coordinates in undeformed configuration Incompressible Spherically Symmetric Solids • Coordinates in deformed configuration R, , r, , • Points only move radially, due to spherical symmetry 5

Incompressible Spherically Symmetric Solids. Cauchy stress: 6=o, [rle,e, +oo[r]e,e, +0oe[rleseo, Op =O-: Deformation gradient:F= F,.[r, R]e,er + Fo,[r, R]e,ea + Fo[r,R]eeeo, Fo, = FaAALeft C-G deformation tensor:B=B,[r]e,e, +Boo[r]e,e, +Beo[rlesee, Bo = ]B00 Strain-displacement relations:drdrrFFFBB>00pD0RdRdRRIncompressibility:drr=1.J = det[F]dR(R)6
Incompressible Spherically Symmetric Solids • Cauchy stress: , . rr r r r r r σ e e e e e e • Deformation gradient: F F r R F r R F r R F F rr r R , , , , . e e e e e e • Left C-G deformation tensor: , . B e e e e e e B r B r B r B B rr r r 2 2 , , , rr rr dr r dr r F F F B B B dR R dR R • Strain-displacement relations: 2 det 1. dr r J dR R F • Incompressibility: 6

Incompressible Spherically Symmetric Solids. Stress-strain relationauauauauauBB21p,3alal,al.alal,auauauauauB21O6p-0Oal,al,al2al,al,32doEquilibrium equations: +F=0-adr Traction BCs: O,[a]=Oa,O,m[b]=Ob. Displacement BCs: u, [a]= ua, u, [b]= up7
Incompressible Spherically Symmetric Solids • Stress-strain relation • Traction BCs: • Displacement BCs: 2 1 1 2 1 2 1 2 2 2 1 1 2 1 2 1 2 2 1 2 2 , 3 1 2 2 . 3 rr rr rr U U U U U I B I I B p I I I I I U U U U U I B I I B p I I I I I • Equilibrium equations: 2 0. rr rr r d F dr r rr a rr b a b , . u a u u b u r a r b , . 7

Pressurized Hollow Sphere: Incompressibilityqe3Pb: No body forces act on the sphere. Before deformation, the sphere hasinner radius A and outer radius BpThe solid is made from ane2incompressible Mooney-Rivlineisolid.Solution:Incompressibility implies:=3-α=R-A。=「4元r2dr=4元R2dRV =V.→r=(R-A+α'),R=(3-α3 +A3)8
• No body forces act on the sphere. • Before deformation, the sphere has inner radius A and outer radius B. • The solid is made from an incompressible Mooney-Rivlin solid. Pressurized Hollow Sphere: Incompressibility • Solution: • Incompressibility implies: 2 2 3 3 3 3 0 1 1 3 3 3 3 3 3 3 3 4 4 , r R a A V V r dr R dR r a R A r R A a R r a A 8

Pressurized Hollow Sphere: Governing Equations: Deformation gradient and left C-G strain:drrFFBB= Bo三H1LRRdRRRStress-strain relationsI,=Bu = Bm +2Boo, 1,=(7-BxBh)==(Bm +2Be) -(B, +2B2)=(2B,m +Be)Beaauaui42U=(I,-3)+(I, -3)al,2′al,20m =2(u4 + μ, Bem)(Bm - Be0)+ p,(μu + μ,Boo)(Bm - Be)+ pGoo=000=0900Equilibrium equation:2R,R4R+)-(-等)dom +2(am-0m)+F,=0+C0,=μ一1dr9
• Deformation gradient and left C-G strain: Pressurized Hollow Sphere: Governing Equations 2 4 2 , , , rr rr dr r r r r F F F B B B dR R R R R • Stress-strain relations: 2 2 2 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 , 2 2 2 2 2 3 3 , 2 , 3 2 2 2 2 1 . 3 rr rr kk rr ik ki rr rr rr rr I B B B I I B B B B B B B B B U U B B B p U I I I I B B B p • Equilibrium equation: 4 2 1 2 4 2 2 2 2 2 0 . rr rr r rr R R r R C r d F dr r r R r 9

Pressurized Hollow Sphere: BCs· Boundary conditionsA42a2A4-p=μL2a4A[r=a,R= A:Om=-Pa -aB4r=b;R=B:Om=-Pb2B2bBPb=/山26462R2bB: Adding the two equations gives the expression for C121中Ll2Pa+ pbU+ 2B2α2042B4B2β22a2Although unnecessary, the Pressure p in the stress-strainrelations can be determined by comparing expressions ofthe radial stress10
• Boundary conditions Pressurized Hollow Sphere: BCs 4 2 1 2 1 2 4 2 4 2 4 2 1 2 1 2 4 2 4 2 2 2 2 1 1 2 ; : 2 2 ; : 2 2 2 1 1 2 2 2 a rr a rr b b A A A p C C r a R A p a a a r b R B p B B B p C C b b a b A b B • Adding the two equations gives the expression for C. • Although unnecessary, the Pressure p in the stress-strain relations can be determined by comparing expressions of the radial stress. 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 《固体力学基础》课程参考文献:《材料力学史》书籍教材PDF电子版(铁木生可).pdf
- 东南大学:《固体力学基础》课程概述 Foundations of Solid Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A01 Introduction to Architectural Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A22 Cyclic Loading and Fatigue.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A21 Dynamic Loading.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第4章 桥梁工程抗震设计.pdf
